Bioinformatics Research and Applications: 20th International Symposium, ISBRA 2024, Kunming, China, July 19–21, 2024, Proceedings, Part III: Lecture Notes in Computer Science, cartea 14956
Editat de Wei Peng, Zhipeng Cai, Pavel Skumsen Limba Engleză Paperback – 10 iul 2024
The 93 full papers included in this book were carefully reviewed and selected from 236 submissions. The symposium provides a forum for the exchange of ideas and results among researchers, developers, and practitioners working on all aspects of bioinformatics and computational biology and their applications.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 381.21 lei 22-36 zile | |
Springer Nature Singapore – 10 iul 2024 | 381.21 lei 22-36 zile | |
Springer Nature Singapore – 10 iul 2024 | 544.76 lei 43-57 zile |
Din seria Lecture Notes in Computer Science
- 20% Preț: 1061.55 lei
- 20% Preț: 340.32 lei
- 20% Preț: 341.95 lei
- 20% Preț: 453.32 lei
- 20% Preț: 238.01 lei
- 20% Preț: 340.32 lei
- 20% Preț: 438.69 lei
- Preț: 449.57 lei
- 20% Preț: 343.62 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 256.27 lei
- 20% Preț: 645.28 lei
- 17% Preț: 427.22 lei
- 20% Preț: 655.02 lei
- 20% Preț: 307.71 lei
- 20% Preț: 1075.26 lei
- 20% Preț: 591.51 lei
- 20% Preț: 337.00 lei
- 15% Preț: 438.59 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- Preț: 389.48 lei
- 20% Preț: 326.98 lei
- 20% Preț: 1414.79 lei
- 20% Preț: 1024.44 lei
- 20% Preț: 579.30 lei
- 20% Preț: 575.48 lei
- 20% Preț: 583.40 lei
- 20% Preț: 763.23 lei
- 15% Preț: 580.46 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 353.50 lei
- 20% Preț: 585.88 lei
- Preț: 410.88 lei
- 20% Preț: 596.46 lei
- 20% Preț: 763.23 lei
- 20% Preț: 825.93 lei
- 20% Preț: 649.49 lei
- 20% Preț: 350.21 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 381.21 lei
Nou
Puncte Express: 572
Preț estimativ în valută:
72.96€ • 75.97$ • 61.66£
72.96€ • 75.97$ • 61.66£
Carte disponibilă
Livrare economică 17 februarie-03 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789819750863
ISBN-10: 9819750865
Pagini: 147
Ilustrații: XIV, 147 p. 40 illus., 32 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.25 kg
Ediția:2024
Editura: Springer Nature Singapore
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Bioinformatics
Locul publicării:Singapore, Singapore
ISBN-10: 9819750865
Pagini: 147
Ilustrații: XIV, 147 p. 40 illus., 32 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.25 kg
Ediția:2024
Editura: Springer Nature Singapore
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Bioinformatics
Locul publicării:Singapore, Singapore
Cuprins
.- Feddaw: Dual Adaptive Weighted Federated Learning for Non-IID Medical Data.
.- LoopNetica: predicting chromatin loops using convolutional neural networks and attention mechanisms.
.- Probabilistic and Machine Learning Models for the Protein Scaffold Gap Filling Problem.
.- Patient Anticancer Drug Response Prediction based on Single-Cell Deconvolution.
.- A Data Set of Paired Structural Segments between Protein Data Bank and AlphaFold DB for Medium-Resolution Cryo-EM Density Maps: A Gap in Overall Structural Quality.
.- PmmNDD: Predicting the Pathogenicity of Missense Mutations in Neurodegenerative Diseases via Ensemble Learning.
.- Improved Inapproximability Gap and Approximation Algorithm for Scaffold Filling to Maximize Increased Duo-preservations.
.- Residual Spatio-Temporal Attention based Prototypical Network for Rare Arrhythmia Classification.
.- SEMQuant: Extending Sipros-Ensemble with Match-Between-Runs for comprehensive quantitative metaproteomics.
.- PrSMBooster:Improving the Accuracy of Top-down Proteoform Characterization using Deep Learning Rescoring Models.
.- FCMEDriver: identifing cancer driver gene by combining mutual exclusivity of embedded features and optimized mutation frequency score.
.- LoopNetica: predicting chromatin loops using convolutional neural networks and attention mechanisms.
.- Probabilistic and Machine Learning Models for the Protein Scaffold Gap Filling Problem.
.- Patient Anticancer Drug Response Prediction based on Single-Cell Deconvolution.
.- A Data Set of Paired Structural Segments between Protein Data Bank and AlphaFold DB for Medium-Resolution Cryo-EM Density Maps: A Gap in Overall Structural Quality.
.- PmmNDD: Predicting the Pathogenicity of Missense Mutations in Neurodegenerative Diseases via Ensemble Learning.
.- Improved Inapproximability Gap and Approximation Algorithm for Scaffold Filling to Maximize Increased Duo-preservations.
.- Residual Spatio-Temporal Attention based Prototypical Network for Rare Arrhythmia Classification.
.- SEMQuant: Extending Sipros-Ensemble with Match-Between-Runs for comprehensive quantitative metaproteomics.
.- PrSMBooster:Improving the Accuracy of Top-down Proteoform Characterization using Deep Learning Rescoring Models.
.- FCMEDriver: identifing cancer driver gene by combining mutual exclusivity of embedded features and optimized mutation frequency score.