Advanced Computing: 13th International Conference, IACC 2023, Kolhapur, India, December 15–16, 2023, Revised Selected Papers, Part II: Communications in Computer and Information Science, cartea 2054
Editat de Deepak Garg, Joel J. P. C. Rodrigues, Suneet Kumar Gupta, Xiaochun Cheng, Pushpender Sarao, Govind Singh Patelen Limba Engleză Paperback – 26 mar 2024
The two-volume set CCIS 2053 and 2054 constitutes the refereed post-conference proceedings of the 13th International Advanced Computing Conference, IACC 2023, held in Kolhapur, India, during December 15–16, 2023.
The 66 full papers and 6 short papers presented in these proceedings were carefully reviewed and selected from 425 submissions. The papers are organized in the following topical sections:
Volume I:
The AI renaissance: a new era of human-machine collaboration; application of recurrent neural network in natural language processing, AI content detection and time series data analysis; unveiling the next frontier of AI advancement.
Volume II:
Agricultural resilience and disaster management for sustainable harvest; disease and abnormalities detection using ML and IOT; application of deep learning in healthcare; cancer detection using AI.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 579.64 lei 6-8 săpt. | |
Springer Nature Switzerland – 26 mar 2024 | 579.64 lei 6-8 săpt. | |
Springer Nature Switzerland – 15 apr 2024 | 583.51 lei 6-8 săpt. |
Din seria Communications in Computer and Information Science
- 20% Preț: 318.93 lei
- 20% Preț: 655.52 lei
- 20% Preț: 318.12 lei
- 20% Preț: 331.04 lei
- 20% Preț: 642.92 lei
- 20% Preț: 646.61 lei
- 20% Preț: 327.16 lei
- 20% Preț: 330.73 lei
- 20% Preț: 643.08 lei
- 20% Preț: 643.42 lei
- 20% Preț: 645.97 lei
- Preț: 384.70 lei
- 20% Preț: 322.96 lei
- Preț: 378.26 lei
- 20% Preț: 329.26 lei
- 20% Preț: 327.80 lei
- 20% Preț: 325.06 lei
- 20% Preț: 642.59 lei
- 20% Preț: 331.68 lei
- 20% Preț: 327.16 lei
- 20% Preț: 327.80 lei
- 20% Preț: 331.86 lei
- 20% Preț: 653.10 lei
- 20% Preț: 307.18 lei
- 20% Preț: 329.26 lei
- 20% Preț: 331.86 lei
- 20% Preț: 323.59 lei
- 20% Preț: 647.43 lei
- 15% Preț: 635.31 lei
- 20% Preț: 640.35 lei
- 20% Preț: 325.38 lei
- 20% Preț: 331.04 lei
- 20% Preț: 1033.89 lei
- 20% Preț: 819.57 lei
- 20% Preț: 643.42 lei
- 20% Preț: 1206.03 lei
- 20% Preț: 324.60 lei
- 20% Preț: 329.26 lei
- 20% Preț: 316.51 lei
- 20% Preț: 741.18 lei
- 20% Preț: 113.93 lei
- 20% Preț: 329.44 lei
- Preț: 379.96 lei
- 20% Preț: 470.55 lei
- 20% Preț: 735.66 lei
- 20% Preț: 330.23 lei
- 20% Preț: 321.35 lei
- 20% Preț: 401.75 lei
- 20% Preț: 328.63 lei
- 20% Preț: 523.80 lei
Preț: 579.64 lei
Preț vechi: 681.93 lei
-15% Nou
Puncte Express: 869
Preț estimativ în valută:
110.92€ • 116.69$ • 91.84£
110.92€ • 116.69$ • 91.84£
Carte tipărită la comandă
Livrare economică 15-29 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031567025
ISBN-10: 3031567021
Ilustrații: XXVIII, 424 p. 210 illus., 183 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.63 kg
Ediția:2024
Editura: Springer Nature Switzerland
Colecția Springer
Seria Communications in Computer and Information Science
Locul publicării:Cham, Switzerland
ISBN-10: 3031567021
Ilustrații: XXVIII, 424 p. 210 illus., 183 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.63 kg
Ediția:2024
Editura: Springer Nature Switzerland
Colecția Springer
Seria Communications in Computer and Information Science
Locul publicării:Cham, Switzerland
Cuprins
Agricultural Resilience and Disaster Management for Sustainable Harvest.- Plant Disease Recognition using Machine Learning and Deep Learning Classifiers.- Securing Lives and Assets: IoT-Based Earthquake and Fire Detection for Real-Time Monitoring and Safety.- An Early Detection of Fall Using Knowledge Distillation Ensemble Prediction Using Classification.- Deep Learning Methods for Precise Sugarcane Disease Detection and Sustainable Crop Management.- An Interactive Interface for Plant Disease Prediction and Remedy Recommendation.- Tilapia Fish Freshness Detection using CNN Models.- Chilli Leaf Disease Detection using Deep Learning.- Damage Evaluation Following Natural Disasters Using Deep Learning.- Total Electron Content Forecasting in Low Latitude Regions of India: Machine & Deep Learning Synergy.- Disease and Abnormalities Detection using ML and IOT.- Early Phase Detection of Diabetes Mellitus Using Machine Learning.- Diabetes Risk Prediction through Fine-Tuned Gradient Boosting.- Early Detection of Diabetes using ML-based Classification Algorithms.- Prediction Of Abnormality Using IoT and Machine Learning.- Detection of Cardiovascular Diseases using Machine Learning Approach.- Mild Cognitive Impairment Diagnosis Using Neuropsychological Tests and Agile Machine Learning.- Heart Disease Diagnosis using Machine Learning Classifiers.- Comparative Evaluation of Feature Extraction Techniques in Chest X Ray Image with Different Classification Model.- Application of Deep Learning in Healthcare.- Transfer Learning Approach for Differentiating Parkinson’s Syndromes using Voice Recordings.- Detection of Brain Tumor Type Based on FANET Segmentation and Hybrid Squeeze Excitation Network with KNN.- Mental Health Analysis using Rasa and Bert: Mindful.- Kidney Failure Identification using Augment Intelligence and IOT Based on Integrated Healthcare System.- Efficient Characterization of Cough Sounds Using Statistical Analysis.- An Efficient Method for Heart Failure Diagnosis.- Novel Machine Learning Algorithms for Predicting COVID-19 Clinical Outcomes with Gender Analysis.- A Genetic Algorithm-Enhanced Deep Neural Network for Efficient and Optimized Brain Tumor Detection.- Diabetes Prediction using Ensemble Learning.- Cancer Detection Using AI.- A Predictive Deep Learning Ensemble Based Approach for Advanced Cancer Classification.- Predictive Deep Learning: An Analysis of Inception V3, VGG16, and VGG19 Models for Breast Cancer Detection.- Innovation in the Field of Oncology: Early Lung Cancer Detection and Classification using AI.- Colon Cancer Nuclei Classification with Convolutional Neural Networks.- Genetic Algorithm-based Optimization of UNet for Breast Cancer Classification: A Lightweight and Efficient approach for IoT Devices.- Classification of Colorectal Cancer Tissue Utilizing Machine Learning Algorithms.- Prediction of Breast Cancer using Machine Learning Technique.