Advanced Methods of Physiological System Modeling: Volume 3
Editat de V.Z. Marmarelisen Limba Engleză Hardback – 31 oct 1994
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 363.39 lei 43-57 zile | |
Springer Us – 10 mai 2012 | 363.39 lei 43-57 zile | |
Springer Us – 29 apr 2013 | 698.59 lei 43-57 zile | |
Hardback (1) | 701.65 lei 43-57 zile | |
Springer Us – 31 oct 1994 | 701.65 lei 43-57 zile |
Preț: 701.65 lei
Preț vechi: 738.58 lei
-5% Nou
Puncte Express: 1052
Preț estimativ în valută:
134.29€ • 139.97$ • 111.79£
134.29€ • 139.97$ • 111.79£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780306448195
ISBN-10: 030644819X
Pagini: 272
Ilustrații: XII, 272 p.
Dimensiuni: 178 x 254 x 18 mm
Greutate: 0.58 kg
Ediția:1994
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States
ISBN-10: 030644819X
Pagini: 272
Ilustrații: XII, 272 p.
Dimensiuni: 178 x 254 x 18 mm
Greutate: 0.58 kg
Ediția:1994
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
Nonlinear Modeling of Physiological Systems Using Principal Dynamic Modes.- Experimental Basis for an Input/Output Model of the Hippocampal Formation.- Computational Methods of Neuronal Network Decomposition.- An Extension of the M-Sequence Technique for the Analysis of Multi-Input Nonlinear Systems.- Examples of the Investigation of Neural Information Processing by Point Process Analysis.- Testing a Nonlinear Model of Sensory Adaptation with a Range of Step Input Functions.- Identification of Nonlinear System with Feedback Structure.- Identification of Multiple-Input Nonlinear Systems Using Non-White Test Signals.- Nonlinear System Identification of Hippocampal Neurons.- Parametric and Nonparametric Nonlinear Modeling of Renal Autoregulation Dynamics.- Identification of Parametric (NARMAX) Models from Estimated Volterra Kernels.- Equivalence between Nonlinear Differential and Difference Equation Models Using Kernel Invariance Methods.- On Kernel Estimation Using Non-Gaussian and/or Non-White Input Data.- On the Relation between Volterra Models and Feedforward Artificial Neural Networks.- Three Conjectures on Neural Network Implementations of Volterra Models (Mappings).- Contributors.