Advances in Intelligent Data Analysis XVII: 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24–26, 2018, Proceedings: Lecture Notes in Computer Science, cartea 11191
Editat de Wouter Duivesteijn, Arno Siebes, Antti Ukkonenen Limba Engleză Paperback – 5 oct 2018
Din seria Lecture Notes in Computer Science
- 20% Preț: 1040.03 lei
- 20% Preț: 333.46 lei
- 20% Preț: 335.08 lei
- 20% Preț: 444.17 lei
- 20% Preț: 238.01 lei
- 15% Preț: 568.74 lei
- 20% Preț: 333.46 lei
- 20% Preț: 438.69 lei
- Preț: 373.56 lei
- 20% Preț: 336.71 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 632.22 lei
- 20% Preț: 747.79 lei
- 20% Preț: 1053.45 lei
- 17% Preț: 427.22 lei
- 20% Preț: 641.78 lei
- 20% Preț: 307.71 lei
- 20% Preț: 809.19 lei
- 20% Preț: 579.56 lei
- 20% Preț: 649.49 lei
- 20% Preț: 330.23 lei
- Preț: 389.48 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- 20% Preț: 1003.66 lei
- 20% Preț: 326.98 lei
- 20% Preț: 256.27 lei
- 20% Preț: 567.60 lei
- 20% Preț: 571.63 lei
- 20% Preț: 575.48 lei
- 20% Preț: 574.05 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 346.40 lei
- 20% Preț: 747.79 lei
- Preț: 402.62 lei
- 20% Preț: 584.40 lei
- 20% Preț: 569.19 lei
- 20% Preț: 1159.14 lei
- 20% Preț: 1386.07 lei
- 20% Preț: 343.16 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 331.22 lei
Preț vechi: 414.03 lei
-20% Nou
Puncte Express: 497
Preț estimativ în valută:
63.40€ • 66.55$ • 52.37£
63.40€ • 66.55$ • 52.37£
Carte tipărită la comandă
Livrare economică 31 ianuarie-14 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030017675
ISBN-10: 3030017672
Pagini: 371
Ilustrații: XIII, 394 p. 133 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.57 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Information Systems and Applications, incl. Internet/Web, and HCI
Locul publicării:Cham, Switzerland
ISBN-10: 3030017672
Pagini: 371
Ilustrații: XIII, 394 p. 133 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.57 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Information Systems and Applications, incl. Internet/Web, and HCI
Locul publicării:Cham, Switzerland
Cuprins
Elements of an Automatic Data Scientist.- The Need for Interpretability Biases Open Data Science.- Automatic POI Matching Using an Outlier Detection Based Approach.- Fact Checking from Natural Text with Probabilistic Soft Logic.- ConvoMap: Using Convolution to Order Boolean Data.- Training Neural Networks to distinguish craving smokers, non-craving smokers, and non-smokers.- Missing Data Imputation via Denoising Autoencoders: the untold story.- Online Non-Linear Gradient Boosting in Multi-Latent Spaces.- MDP-based Itinerary Recommendation using Geo-Tagged Social Media.- Multiview Learning of Weighted Majority Vote by Bregman Divergence Minimization.- Non-Negative Local Sparse Coding for Subspace Clustering.- Pushing the Envelope in Overlapping Communities Detection.-Right for the Right Reason: Training Agnostic Networks.- Link Prediction in Multi-Layer Networks and its Application to Drug Design.- A hierarchical Ornstein-Uhlenbeck model for stochastic time series analysis.- Analysing the footprint of classi_ers in overlapped and imbalanced contexts.- Tree-based Cost Sensitive Methods for Fraud Detection in Imbalanced Data.- Reduction Stumps for Multi-Class Classification.- Decomposition of quantitative Gaifman graphs as a data analysis tool.- Exploring the Effects of Data Distribution in Missing Data Imputation.- Communication-free Widened Learning of Bayesian Network Classifiers Using Hashed Fiedler Vectors.- Expert finding in Citizen Science platform for biodiversity monitoring via weighted PageRank algorithm.- Random forests with latent variables to foster feature selection in the context of highly correlated variables. Illustration with a bioinformatics application.-Don't Rule Out Simple Models Prematurely: a Large Scale Benchmark Comparing Linear and Non-linear Classifiers in OpenML.- Detecting Shifts in Public Opinion: a big data study of global news content.- Biased Embeddings from Wild Data: Measuring, Understanding and Removing.- Real-Time Excavation Detection at Construction Sites using Deep Learning.- COBRAS: Interactive Clustering with Pairwise Queries.- Automatically Wrangling Spreadsheets into Machine Learning Data Formats.- Learned Feature Generation for Molecules.