Advances in Knowledge Discovery and Data Mining: 7th Pacific-Asia Conference, PAKDD 2003. Seoul, Korea, April 30 - May 2, 2003, Proceedings: Lecture Notes in Computer Science, cartea 2637
Editat de Kyu-Young Whang, Jongwoo Jeon, Kyuseok Shim, Jaideep Srivatavaen Limba Engleză Paperback – 16 apr 2003
Din seria Lecture Notes in Computer Science
- 20% Preț: 1021.30 lei
- 20% Preț: 337.03 lei
- 20% Preț: 340.22 lei
- 20% Preț: 256.27 lei
- 20% Preț: 324.32 lei
- 20% Preț: 438.69 lei
- 20% Preț: 315.78 lei
- 20% Preț: 327.52 lei
- 20% Preț: 148.66 lei
- 20% Preț: 122.89 lei
- 20% Preț: 557.41 lei
- 20% Preț: 561.37 lei
- 15% Preț: 558.56 lei
- 20% Preț: 238.01 lei
- 20% Preț: 504.57 lei
- 20% Preț: 329.09 lei
- 20% Preț: 563.75 lei
- 20% Preț: 630.24 lei
- 20% Preț: 321.96 lei
- 20% Preț: 1361.10 lei
- 20% Preț: 310.26 lei
- 20% Preț: 607.39 lei
- Preț: 366.90 lei
- 20% Preț: 172.69 lei
- 20% Preț: 315.19 lei
- 20% Preț: 985.59 lei
- 20% Preț: 620.87 lei
- 20% Preț: 436.22 lei
- 20% Preț: 734.34 lei
- 20% Preț: 1034.49 lei
- 17% Preț: 360.19 lei
- 20% Preț: 309.90 lei
- 20% Preț: 573.92 lei
- 20% Preț: 301.95 lei
- 20% Preț: 307.71 lei
- 20% Preț: 369.12 lei
- 20% Preț: 327.52 lei
- 20% Preț: 794.65 lei
- 20% Preț: 569.16 lei
- Preț: 395.43 lei
- 20% Preț: 1138.26 lei
- 20% Preț: 734.34 lei
- 20% Preț: 315.78 lei
- 20% Preț: 330.70 lei
- 20% Preț: 538.29 lei
- 20% Preț: 326.98 lei
Preț: 635.81 lei
Preț vechi: 794.76 lei
-20% Nou
Puncte Express: 954
Preț estimativ în valută:
121.69€ • 128.37$ • 101.41£
121.69€ • 128.37$ • 101.41£
Carte tipărită la comandă
Livrare economică 03-17 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540047605
ISBN-10: 3540047603
Pagini: 636
Ilustrații: XVIII, 614 p.
Dimensiuni: 155 x 235 x 33 mm
Greutate: 0.84 kg
Ediția:2003
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540047603
Pagini: 636
Ilustrații: XVIII, 614 p.
Dimensiuni: 155 x 235 x 33 mm
Greutate: 0.84 kg
Ediția:2003
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Industrial Papers (Invited).- Data Mining as an Automated Service.- Trends and Challenges in the Industrial Applications of KDD.- Stream Mining I.- Finding Event-Oriented Patterns in Long Temporal Sequences.- Mining Frequent Episodes for Relating Financial Events and Stock Trends.- Graph Mining.- An Efficient Algorithm of Frequent Connected Subgraph Extraction.- Classifier Construction by Graph-Based Induction for Graph-Structured Data.- Clustering I.- Comparison of the Performance of Center-Based Clustering Algorithms.- Automatic Extraction of Clusters from Hierarchical Clustering Representations.- Text Mining.- Large Scale Unstructured Document Classification Using Unlabeled Data and Syntactic Information.- Extracting Shared Topics of Multiple Documents.- An Empirical Study on Dimensionality Optimization in Text Mining for Linguistic Knowledge Acquisition.- A Semi-supervised Algorithm for Pattern Discovery in Information Extraction from Textual Data.- Bio Mining.- Mining Patterns of Dyspepsia Symptoms Across Time Points Using Constraint Association Rules.- Predicting Protein Structural Class from Closed Protein Sequences.- Learning Rules to Extract Protein Interactions from Biomedical Text.- Predicting Protein Interactions in Human by Homologous Interactions in Yeast.- Web Mining.- Mining the Customer’s Up-To-Moment Preferences for E-commerce Recommendation.- A Graph-Based Optimization Algorithm for Website Topology Using Interesting Association Rules.- A Markovian Approach for Web User Profiling and Clustering.- Extracting User Interests from Bookmarks on the Web.- Stream Mining II.- Mining Frequent Instances on Workflows.- Real Time Video Data Mining for Surveillance Video Streams.- Distinguishing Causal and Acausal Temporal Relations.- Bayesian Networks.- OnlineBayes Point Machines.- Exploiting Hierarchical Domain Values for Bayesian Learning.- A New Restricted Bayesian Network Classifier.- Clustering II.- AGRID: An Efficient Algorithm for Clustering Large High-Dimensional Datasets.- Multi-level Clustering and Reasoning about Its Clusters Using Region Connection Calculus.- An Efficient Cell-Based Clustering Method for Handling Large, High-Dimensional Data.- Association Rules I.- Enhancing SWF for Incremental Association Mining by Itemset Maintenance.- Reducing Rule Covers with Deterministic Error Bounds.- Evolutionary Approach for Mining Association Rules on Dynamic Databases.- Semi-structured Data Mining.- Position Coded Pre-order Linked WAP-Tree for Web Log Sequential Pattern Mining.- An Integrated System of Mining HTML Texts and Filtering Structured Documents.- A New Sequential Mining Approach to XML Document Similarity Computation.- Classification I.- Optimization of Fuzzy Rules for Classification Using Genetic Algorithm.- Fast Pattern Selection for Support Vector Classifiers.- Averaged Boosting: A Noise-Robust Ensemble Method.- Improving Performance of Decision Tree Algorithms with Multi-edited Nearest Neighbor Rule.- Data Analysis.- HOT: Hypergraph-Based Outlier Test for Categorical Data.- A Method for Aggregating Partitions, Applications in K.D.D..- Efficiently Computing Iceberg Cubes with Complex Constraints through Bounding.- Extraction of Tag Tree Patterns with Contractible Variables from Irregular Semistructured Data.- Association Rules II.- Step-by-Step Regression: A More Efficient Alternative for Polynomial Multiple Linear Regression in Stream Cube.- Progressive Weighted Miner: An Efficient Method for Time-Constraint Mining.- Mining Open Source Software (OSS) Data Using Association Rules Network.- Parallel FP-Growth on PC Cluster.- Feature Selection.- Active Feature Selection Using Classes.- Electricity Based External Similarity of Categorical Attributes.- Weighted Proportional k-Interval Discretization for Naive-Bayes Classifiers.- Dealing with Relative Similarity in Clustering: An Indiscernibility Based Approach.- Stream Mining III.- Considering Correlation between Variables to Improve Spatiotemporal Forecasting.- Correlation Analysis of Spatial Time Series Datasets: A Filter-and-Refine Approach.- When to Update the Sequential Patterns of Stream Data?.- Clustering III.- A New Clustering Algorithm for Transaction Data via Caucus.- DBRS: A Density-Based Spatial Clustering Method with Random Sampling.- Optimized Clustering for Anomaly Intrusion Detection.- Classification II.- Finding Frequent Subgraphs from Graph Structured Data with Geometric Information and Its Application to Lossless Compression.- Upgrading ILP Rules to First-Order Bayesian Networks.- A Clustering Validity Assessment Index.
Caracteristici
Includes supplementary material: sn.pub/extras