Agent-Based Evolutionary Search: Adaptation, Learning, and Optimization, cartea 5
Editat de Ruhul A. Sarker, Tapabrata Rayen Limba Engleză Paperback – 5 sep 2012
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 640.88 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 5 sep 2012 | 640.88 lei 6-8 săpt. | |
Hardback (1) | 645.47 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 9 iun 2010 | 645.47 lei 6-8 săpt. |
Din seria Adaptation, Learning, and Optimization
- 15% Preț: 641.71 lei
- 15% Preț: 634.32 lei
- 20% Preț: 983.85 lei
- 20% Preț: 648.44 lei
- 20% Preț: 2201.85 lei
- 20% Preț: 984.18 lei
- 20% Preț: 985.35 lei
- 20% Preț: 653.38 lei
- 20% Preț: 648.59 lei
- 15% Preț: 640.37 lei
- 20% Preț: 649.43 lei
- 20% Preț: 651.42 lei
- 18% Preț: 1837.57 lei
- 20% Preț: 646.62 lei
- 20% Preț: 927.45 lei
- 20% Preț: 651.75 lei
- 20% Preț: 646.47 lei
- 20% Preț: 986.66 lei
- 20% Preț: 638.55 lei
- 20% Preț: 983.39 lei
- 20% Preț: 991.14 lei
- 15% Preț: 638.57 lei
- 20% Preț: 637.23 lei
- 20% Preț: 1449.13 lei
- 20% Preț: 1284.47 lei
- 20% Preț: 985.35 lei
Preț: 640.88 lei
Preț vechi: 753.97 lei
-15% Nou
Puncte Express: 961
Preț estimativ în valută:
122.65€ • 126.53$ • 103.80£
122.65€ • 126.53$ • 103.80£
Carte tipărită la comandă
Livrare economică 04-18 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642263682
ISBN-10: 3642263682
Pagini: 300
Ilustrații: 291 p. 48 illus. in color.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.43 kg
Ediția:2010
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Adaptation, Learning, and Optimization
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642263682
Pagini: 300
Ilustrații: 291 p. 48 illus. in color.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.43 kg
Ediția:2010
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Adaptation, Learning, and Optimization
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Agent Based Evolutionary Approach: An Introduction.- Multi-Agent Evolutionary Model for Global Numerical Optimization.- An Agent Based Evolutionary Approach for Nonlinear Optimization with Equality Constraints.- Multiagent-Based Approach for Risk Analysis in Mission Capability Planning.- Agent Based Evolutionary Dynamic Optimization.- Divide and Conquer in Coevolution: A Difficult Balancing Act.- Complex Emergent Behaviour from Evolutionary Spatial Animat Agents.- An Agent-Based Parallel Ant Algorithm with an Adaptive Migration Controller.- An Attempt to Stochastic Modeling of Memetic Systems.- Searching for the Effective Bidding Strategy Using Parameter Tuning in Genetic Algorithm.- PSO (Particle Swarm Optimization): One Method, Many Possible Applications.- VISPLORE: Exploring Particle Swarms by Visual Inspection.
Textul de pe ultima copertă
The performance of Evolutionary Algorithms can be enhanced by integrating the concept of agents. Agents and Multi-agents can bring many interesting features which are beyond the scope of traditional evolutionary process and learning.
This book presents the state-of-the art in the theory and practice of Agent Based Evolutionary Search and aims to increase the awareness on this effective technology. This includes novel frameworks, a convergence and complexity analysis, as well as real-world applications of Agent Based Evolutionary Search, a design of multi-agent architectures and a design of agent communication and learning Strategy.
This book presents the state-of-the art in the theory and practice of Agent Based Evolutionary Search and aims to increase the awareness on this effective technology. This includes novel frameworks, a convergence and complexity analysis, as well as real-world applications of Agent Based Evolutionary Search, a design of multi-agent architectures and a design of agent communication and learning Strategy.
Caracteristici
State-of-the art in theory and practice of Agent Based Evolutionary Search Includes novel frameworks and real-world applications of Agent Based Evolutionary Search Written by leading experts in this field