Agent-Based Optimization: Studies in Computational Intelligence, cartea 456
Editat de Ireneusz Czarnowski, Piotr Jędrzejowicz, Janusz Kacprzyken Limba Engleză Hardback – 14 dec 2012
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 628.52 lei 43-57 zile | |
Springer Berlin, Heidelberg – 29 ian 2015 | 628.52 lei 43-57 zile | |
Hardback (1) | 634.68 lei 43-57 zile | |
Springer Berlin, Heidelberg – 14 dec 2012 | 634.68 lei 43-57 zile |
Din seria Studies in Computational Intelligence
- 50% Preț: 264.48 lei
- 70% Preț: 235.75 lei
- 20% Preț: 1134.78 lei
- 20% Preț: 966.66 lei
- 20% Preț: 1423.29 lei
- 20% Preț: 168.78 lei
- 18% Preț: 1089.74 lei
- 20% Preț: 565.38 lei
- 20% Preț: 636.14 lei
- 20% Preț: 1026.49 lei
- 20% Preț: 1546.90 lei
- 20% Preț: 630.47 lei
- 20% Preț: 644.20 lei
- 20% Preț: 973.14 lei
- 20% Preț: 970.73 lei
- 20% Preț: 969.90 lei
- 20% Preț: 1142.04 lei
- 20% Preț: 1415.20 lei
- 20% Preț: 1020.82 lei
- 20% Preț: 1026.49 lei
- 20% Preț: 1024.85 lei
- 18% Preț: 2449.69 lei
- 20% Preț: 969.09 lei
- 20% Preț: 1142.04 lei
- 20% Preț: 1140.44 lei
- 20% Preț: 1021.64 lei
- 20% Preț: 1430.55 lei
- 18% Preț: 1375.05 lei
- 18% Preț: 1102.11 lei
- 20% Preț: 1018.40 lei
- 20% Preț: 987.68 lei
- 20% Preț: 1024.07 lei
- 20% Preț: 1249.53 lei
- 20% Preț: 1019.22 lei
- 20% Preț: 968.30 lei
- 20% Preț: 1146.08 lei
- 20% Preț: 1138.80 lei
- 20% Preț: 1037.78 lei
- 20% Preț: 1140.44 lei
- 20% Preț: 1142.87 lei
- 20% Preț: 1429.76 lei
- 18% Preț: 985.35 lei
- 20% Preț: 977.17 lei
- 20% Preț: 1034.54 lei
- 20% Preț: 1258.40 lei
- 20% Preț: 974.89 lei
- 20% Preț: 1027.45 lei
- 20% Preț: 924.65 lei
- 20% Preț: 1149.31 lei
- 20% Preț: 1428.13 lei
Preț: 634.68 lei
Preț vechi: 793.35 lei
-20% Nou
Puncte Express: 952
Preț estimativ în valută:
121.46€ • 126.17$ • 100.89£
121.46€ • 126.17$ • 100.89£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642340963
ISBN-10: 3642340962
Pagini: 216
Ilustrații: X, 206 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.48 kg
Ediția:2013
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642340962
Pagini: 216
Ilustrații: X, 206 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.48 kg
Ediția:2013
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Machine Learning and Multiagent Systems as Interrelated Technologies.- Ant Colony Optimization for the Multi-criteria Vehicle Navigation Problem.- Solving Instances of the Capacitated Vehicle Routing Problem Using Multi-Agent Non-Distributed and Distributed Environment.- Structure vs. Efficiency of the Cross-Entropy Based Population Learning Algorithm for Discrete-Continuous Scheduling with Continuous Resource Discretisation.- Triple-Action Agents Solving the MRCPSP/max Problem.- Team of A-Teams - a Study of the Cooperation Between Program Agents Solving Difficult Optimization Problems.- Distributed Bregman-Distance Algorithms for Min-Max Optimization.- A Probability Collectives Approach for Multi-Agent Distributed and Cooperative Optimization with Tolerance for Agent Failure.
Textul de pe ultima copertă
This volume presents a collection of original research works by leading specialists focusing on novel and promising approaches in which the multi-agent system paradigm is used to support, enhance or replace traditional approaches to solving difficult optimization problems. The editors have invited several well-known specialists to present their solutions, tools, and models falling under the common denominator of the agent-based optimization. The book consists of eight chapters covering examples of application of the multi-agent paradigm and respective customized tools to solve difficult optimization problems arising in different areas such as machine learning, scheduling, transportation and, more generally, distributed and cooperative problem solving.
Caracteristici
Recent research in Agent-Based Optimization Presents novel and promising approaches in which the multi-agent system paradigm is used to solve difficult optimization problems Written by leading experts in the field