Algorithmic Learning Theory: 13th International Conference, ALT 2002, Lübeck, Germany, November 24-26, 2002, Proceedings: Lecture Notes in Computer Science, cartea 2533
Editat de Nicolò Cesa-Bianchi, Masayuki Numao, Rüdiger Reischuken Limba Engleză Paperback – 13 noi 2002
Din seria Lecture Notes in Computer Science
- 20% Preț: 1040.03 lei
- 20% Preț: 333.46 lei
- 20% Preț: 335.08 lei
- 20% Preț: 444.17 lei
- 20% Preț: 238.01 lei
- 20% Preț: 333.46 lei
- 20% Preț: 438.69 lei
- Preț: 440.52 lei
- 20% Preț: 336.71 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 256.27 lei
- 20% Preț: 632.22 lei
- 17% Preț: 427.22 lei
- 20% Preț: 641.78 lei
- 20% Preț: 307.71 lei
- 20% Preț: 1053.45 lei
- 20% Preț: 579.56 lei
- Preț: 373.56 lei
- 20% Preț: 330.23 lei
- 15% Preț: 429.74 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- Preț: 389.48 lei
- 20% Preț: 326.98 lei
- 20% Preț: 1386.07 lei
- 20% Preț: 1003.66 lei
- 20% Preț: 567.60 lei
- 20% Preț: 575.48 lei
- 20% Preț: 571.63 lei
- 20% Preț: 747.79 lei
- 15% Preț: 568.74 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 346.40 lei
- 20% Preț: 574.05 lei
- Preț: 402.62 lei
- 20% Preț: 584.40 lei
- 20% Preț: 747.79 lei
- 20% Preț: 809.19 lei
- 20% Preț: 649.49 lei
- 20% Preț: 343.16 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 334.44 lei
Preț vechi: 418.05 lei
-20% Nou
Puncte Express: 502
Preț estimativ în valută:
64.00€ • 66.48$ • 53.17£
64.00€ • 66.48$ • 53.17£
Carte tipărită la comandă
Livrare economică 04-18 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540001706
ISBN-10: 3540001700
Pagini: 432
Ilustrații: XII, 420 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.63 kg
Ediția:2002
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540001700
Pagini: 432
Ilustrații: XII, 420 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.63 kg
Ediția:2002
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Editors’ Introduction.- Editors’ Introduction.- Invited Papers.- Mathematics Based on Learning.- Data Mining with Graphical Models.- On the Eigenspectrum of the Gram Matrix and Its Relationship to the Operator Eigenspectrum.- In Search of the Horowitz Factor: Interim Report on a Musical Discovery Project.- Learning Structure from Sequences, with Applications in a Digital Library.- Regular Contributions.- On Learning Monotone Boolean Functions under the Uniform Distribution.- On Learning Embedded Midbit Functions.- Maximizing Agreements and CoAgnostic Learning.- Optimally-Smooth Adaptive Boosting and Application to Agnostic Learning.- Large Margin Classification for Moving Targets.- On the Smallest Possible Dimension and the Largest Possible Margin of Linear Arrangements Representing Given Concept Classes Uniform Distribution.- A General Dimension for Approximately Learning Boolean Functions.- The Complexity of Learning Concept Classes with Polynomial General Dimension.- On the Absence of Predictive Complexity for Some Games.- Consistency Queries in Information Extraction.- Ordered Term Tree Languages which Are Polynomial Time Inductively Inferable from Positive Data.- Reflective Inductive Inference of Recursive Functions.- Classes with Easily Learnable Subclasses.- On the Learnability of Vector Spaces.- Learning, Logic, and Topology in a Common Framework.- A Pathology of Bottom-Up Hill-Climbing in Inductive Rule Learning.- Minimised Residue Hypotheses in Relevant Logic.- Compactness and Learning of Classes of Unions of Erasing Regular Pattern Languages.- A Negative Result on Inductive Inference of Extended Pattern Languages.- RBF Neural Networks and Descartes’ Rule of Signs.- Asymptotic Optimality of Transductive Confidence Machine.- An Efficient PAC Algorithm forReconstructing a Mixture of Lines.- Constraint Classification: A New Approach to Multiclass Classification.- How to Achieve Minimax Expected Kullback-Leibler Distance from an Unknown Finite Distribution.- Classification with Intersecting Rules.- Feedforward Neural Networks in Reinforcement Learning Applied to High-Dimensional Motor Control.
Caracteristici
Includes supplementary material: sn.pub/extras