Algorithmic Learning Theory: 9th International Conference, ALT’98, Otzenhausen, Germany, October 8–10, 1998 Proceedings: Lecture Notes in Computer Science, cartea 1501
Editat de Michael M. Richter, Carl H. Smith, Rolf Wiehagen, Thomas Zeugmannen Limba Engleză Paperback – 23 sep 1998
Din seria Lecture Notes in Computer Science
- 20% Preț: 1053.72 lei
- 20% Preț: 337.82 lei
- 20% Preț: 339.43 lei
- 20% Preț: 449.99 lei
- 20% Preț: 238.01 lei
- 20% Preț: 337.82 lei
- 20% Preț: 438.69 lei
- Preț: 446.28 lei
- 20% Preț: 341.10 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 256.27 lei
- 20% Preț: 640.52 lei
- 17% Preț: 427.22 lei
- 20% Preț: 650.20 lei
- 20% Preț: 307.71 lei
- 20% Preț: 1067.33 lei
- 20% Preț: 587.17 lei
- Preț: 378.43 lei
- 20% Preț: 334.54 lei
- 15% Preț: 435.36 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- Preț: 389.48 lei
- 20% Preț: 326.98 lei
- 20% Preț: 1404.34 lei
- 20% Preț: 1016.88 lei
- 20% Preț: 575.04 lei
- 20% Preț: 575.48 lei
- 20% Preț: 579.12 lei
- 20% Preț: 757.61 lei
- 15% Preț: 576.20 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 350.92 lei
- 20% Preț: 581.57 lei
- Preț: 407.85 lei
- 20% Preț: 592.06 lei
- 20% Preț: 757.61 lei
- 20% Preț: 819.86 lei
- 20% Preț: 649.49 lei
- 20% Preț: 347.62 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 338.00 lei
Preț vechi: 422.50 lei
-20% Nou
Puncte Express: 507
Preț estimativ în valută:
64.73€ • 66.69$ • 54.23£
64.73€ • 66.69$ • 54.23£
Carte tipărită la comandă
Livrare economică 22 februarie-08 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540650133
ISBN-10: 354065013X
Pagini: 460
Ilustrații: XI, 444 p. 1 illus.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.64 kg
Ediția:Softcover reprint of the original 1st ed. 1998
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 354065013X
Pagini: 460
Ilustrații: XI, 444 p. 1 illus.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.64 kg
Ediția:Softcover reprint of the original 1st ed. 1998
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Editors’ Introduction.- Editors’ Introduction.- Inductive Logic Programming and Data Mining.- Scalability Issues in Inductive Logic Programming.- Inductive Inference.- Learning to Win Process-Control Games Watching Game-Masters.- Closedness Properties in EX-Identification of Recursive Functions.- Learning via Queries.- Lower Bounds for the Complexity of Learning Half-Spaces with Membership Queries.- Cryptographic Limitations on Parallelizing Membership and Equivalence Queries with Applications to Random Self-Reductions.- Learning Unary Output Two-Tape Automata from Multiplicity and Equivalence Queries.- Computational Aspects of Parallel Attribute-Efficient Learning.- PAC Learning from Positive Statistical Queries.- Prediction Algorithns.- Structured Weight-Based Prediction Algorithms.- Inductive Logic Programming.- Learning from Entailment of Logic Programs with Local Variables.- Logical Aspects of Several Bottom-Up Fittings.- Learnability of Translations from Positive Examples.- Analysis of Case-Based Representability of Boolean Functions by Monotone Theory.- Learning Formal Languages.- Locality, Reversibility, and Beyond: Learning Languages from Positive Data.- Synthesizing Learners Tolerating Computable Noisy Data.- Characteristic Sets for Unions of Regular Pattern Languages and Compactness.- Finding a One-Variable Pattern from Incomplete Data.- A Fast Algorithm for Discovering Optimal String Patterns in Large Text Databases.- Inductive Inference.- A Comparison of Identification Criteria for Inductive Inference of Recursive Real-Valued Functions.- Predictive Learning Models for Concept Drift.- Learning with Refutation.- Comparing the Power of Probabilistic Learning and Oracle Identification Under Monotonicity Constraints.- Learning Algebraic Structures from TextUsing Semantical Knowledge.- Inductive Logic Programming.- Lime: A System for Learning Relations.- Miscellaneous.- On the Sample Complexity for Neural Trees.- Learning Sub-classes of Monotone DNF on the Uniform Distribution.- Using Attribute Grammars for Description of Inductive Inference Search Space.- Towards the Validation of Inductive Learning Systems.- Consistent Polynomial Identification in the Limit.
Caracteristici
Includes supplementary material: sn.pub/extras