Algorithmic Lie Theory for Solving Ordinary Differential Equations: Chapman & Hall/CRC Pure and Applied Mathematics
Autor Fritz Schwarzen Limba Engleză Paperback – 5 sep 2019
After an introductory chapter, the book provides the mathematical foundation of linear differential equations, covering Loewy's theory and Janet bases. The following chapters present results from the theory of continuous groups of a 2-D manifold and discuss the close relation between Lie's symmetry analysis and the equivalence problem. The core chapters of the book identify the symmetry classes to which quasilinear equations of order two or three belong and transform these equations to canonical form. The final chapters solve the canonical equations and produce the general solutions whenever possible as well as provide concluding remarks. The appendices contain solutions to selected exercises, useful formulae, properties of ideals of monomials, Loewy decompositions, symmetries for equations from Kamke's collection, and a brief description of the software system ALLTYPES for solving concrete algebraic problems.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 495.19 lei 43-57 zile | |
CRC Press – 5 sep 2019 | 495.19 lei 43-57 zile | |
Hardback (1) | 1387.22 lei 43-57 zile | |
CRC Press – 2 oct 2007 | 1387.22 lei 43-57 zile |
Din seria Chapman & Hall/CRC Pure and Applied Mathematics
- 9% Preț: 675.62 lei
- 9% Preț: 735.89 lei
- 9% Preț: 1725.78 lei
- 15% Preț: 485.67 lei
- 15% Preț: 495.41 lei
- 15% Preț: 481.62 lei
- 12% Preț: 313.61 lei
- 15% Preț: 485.67 lei
- 26% Preț: 1210.38 lei
- 20% Preț: 461.20 lei
- 18% Preț: 797.06 lei
- 15% Preț: 485.67 lei
- 18% Preț: 895.78 lei
- 15% Preț: 457.65 lei
- 18% Preț: 891.07 lei
- 15% Preț: 457.65 lei
- 26% Preț: 1349.55 lei
- 15% Preț: 457.65 lei
- 18% Preț: 839.84 lei
- 32% Preț: 1391.07 lei
- 25% Preț: 766.85 lei
- 26% Preț: 878.00 lei
- 26% Preț: 1466.15 lei
- 15% Preț: 484.85 lei
- 15% Preț: 485.67 lei
- 15% Preț: 485.67 lei
- 18% Preț: 2059.45 lei
- 15% Preț: 485.67 lei
- 18% Preț: 966.01 lei
- 15% Preț: 457.65 lei
- 18% Preț: 1270.99 lei
- 8% Preț: 418.23 lei
- 20% Preț: 821.21 lei
- 15% Preț: 457.65 lei
- 26% Preț: 1293.09 lei
- 15% Preț: 457.65 lei
- 26% Preț: 1407.83 lei
- 18% Preț: 2194.57 lei
- 18% Preț: 781.38 lei
- 15% Preț: 485.67 lei
- 18% Preț: 1921.17 lei
- 26% Preț: 874.34 lei
- 18% Preț: 1782.93 lei
- 18% Preț: 2196.14 lei
- 25% Preț: 639.72 lei
- Preț: 386.54 lei
- 21% Preț: 380.81 lei
Preț: 495.19 lei
Preț vechi: 618.99 lei
-20% Nou
Puncte Express: 743
Preț estimativ în valută:
94.84€ • 97.71$ • 79.45£
94.84€ • 97.71$ • 79.45£
Carte tipărită la comandă
Livrare economică 24 februarie-10 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780367388546
ISBN-10: 0367388545
Pagini: 448
Dimensiuni: 156 x 234 x 25 mm
Greutate: 0.61 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Pure and Applied Mathematics
ISBN-10: 0367388545
Pagini: 448
Dimensiuni: 156 x 234 x 25 mm
Greutate: 0.61 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Pure and Applied Mathematics
Cuprins
Introduction. Linear Differential Equations. Lie Transformation Groups. Equivalence and Invariants of Differential Equations. Symmetries of Differential Equations. Transformation to Canonical Form. Solution Algorithms. Concluding Remarks. Appendices. References. Index.
Descriere
This book serves as a valuable introduction for solving differential equations using Lie's theory and related results. It covers Loewy's theory, Janet bases, the theory of continuous groups of a 2-D manifold, Lie's symmetry analysis, and equivalence problems. The book also identifies the symmetry classes to which quasilinear equations of order two or three belong, transforms these equations to canonical form, solves the canonical equations, and produces the general solutions whenever possible. The appendices include solutions to selected exercises and useful formulae while a website contains the software for performing lengthy algebraic calculations.