Cantitate/Preț
Produs

Almost Automorphic and Almost Periodic Functions in Abstract Spaces

Autor Gaston M. N'Guérékata
en Limba Engleză Paperback – dec 2010
Almost Automorphic and Almost Periodic Functions in Abstract Spaces introduces and develops the theory of almost automorphic vector-valued functions in Bochner's sense and the study of almost periodic functions in a locally convex space in a homogenous and unified manner. It also applies the results obtained to study almost automorphic solutions of abstract differential equations, expanding the core topics with a plethora of groundbreaking new results and applications. For the sake of clarity, and to spare the reader unnecessary technical hurdles, the concepts are studied using classical methods of functional analysis.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 63335 lei  6-8 săpt.
  Springer Us – dec 2010 63335 lei  6-8 săpt.
Hardback (1) 63941 lei  6-8 săpt.
  Springer Us – 30 noi 2001 63941 lei  6-8 săpt.

Preț: 63335 lei

Preț vechi: 74511 lei
-15% Nou

Puncte Express: 950

Preț estimativ în valută:
12122 12493$ 10234£

Carte tipărită la comandă

Livrare economică 04-18 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781441933737
ISBN-10: 1441933735
Pagini: 152
Ilustrații: X, 138 p.
Dimensiuni: 152 x 229 x 8 mm
Greutate: 0.22 kg
Ediția:Softcover reprint of the original 1st ed. 2001
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1 Introduction and Preliminaries.- 2 Almost Automorphic Functions with Values in a Banach Space.- 3 Almost Periodic Functions with Values in a Linear Topological Space.- 4 The Equation x?(t) = Ax(t) + f(t).- 5 The Equation x? = f(t, x).- 6 A Case of One-to-One Correspondence between Almost Automorphic and Asymptotically Almost Automorphic Solutions.- 7 Almost Periodic Solutions of the Equation x? = Ax + f in Locally Convex Spaces.- 8 Almost Periodic Solutions of Differential Equations in Normed Spaces.- References.