Cantitate/Preț
Produs

An Accompaniment to Higher Mathematics: Undergraduate Texts in Mathematics

Autor George R. Exner
en Limba Engleză Paperback – 5 ian 1996
For Students Congratulations! You are about to take a course in mathematical proof. If you are nervous about the whole thing, this book is for you (if not, please read the second and third paragraphs in the introduction for professors following this, so you won't feel left out). The rumors are true; a first course in proof may be very hard because you will have to do three things that are probably new to you: 1. Read mathematics independently. 2. Understand proofs on your own. :1. Discover and write your own proofs. This book is all about what to do if this list is threatening because you "never read your calculus book" or "can't do proofs. " Here's the good news: you must be good at mathematics or you wouldn't have gotten this far. Here's the bad news: what worked before may not work this time. Success may lie in improving or discarding many habits that were good enough once but aren't now. Let's see how we've gotten to a point at which someone could dare to imply that you have bad habits. l The typical elementary and high school mathematics education in the United States tends to teach students to have ineffective learning habits, 1 In the first paragraph, yet. xiv Introduction and we blush to admit college can be just as bad.
Citește tot Restrânge

Din seria Undergraduate Texts in Mathematics

Preț: 41811 lei

Nou

Puncte Express: 627

Preț estimativ în valută:
8003 8247$ 6756£

Carte tipărită la comandă

Livrare economică 03-17 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387946177
ISBN-10: 0387946179
Pagini: 200
Ilustrații: XVII, 200 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.35 kg
Ediția:1996
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics

Locul publicării:New York, NY, United States

Public țintă

Lower undergraduate

Cuprins

1 Examples.- 1.1 Propaganda.- 1.2 Basic Examples for Definitions.- 1.3 Basic Examples for Theorems.- 1.4 Extended Examples.- 1.5 Notational Interlude.- 1.6 Examples Again: Standard Sources.- 1.7 Non-examples for Definitions.- 1.8 Non-examples for Theorems.- 1.9 Summary and More Propaganda.- 1.10 What Next?.- 2 Informal Language and Proof.- 2.1 Ordinary Language Clues.- 2.2 Real-Life Proofs vs. Rules of Thumb.- 2.3 Proof Forms for Implication.- 2.4 Two More Proof Forms.- 2.5 The Other Shoe, and Propaganda.- 3 For mal Language and Proof.- 3.1 Propaganda.- 3.2 Formal Language: Basics.- 3.3 Quantifiers.- 3.4 Finding Proofs from Structure.- 3.5 Summary, Propaganda, and What Next?.- 4 Laboratories.- 4.1 Lab I: Sets by Example.- 4.2 Lab II: Functions by Example.- 4.3 Lab III: Sets and Proof.- 4.4 Lab IV: Functions and Proof.- 4.5 Lab V: Function of Sets.- 4.6 Lab VI: Families of Sets.- A Theoretical Apologia.- B Hints.- References.

Caracteristici

Reprint of a best-selling title The text is meant to be used interactively, frequently asking the reader to pause and work on an example or a problem before continuing Designed for students preparing to engage in their first struggles to understand and write proofs and to read mathematics independently Bridges the gap between calculus and higher mathematics