Forcing with Random Variables and Proof Complexity: London Mathematical Society Lecture Note Series, cartea 382
Autor Jan Krajíčeken Limba Engleză Paperback – 22 dec 2010
Din seria London Mathematical Society Lecture Note Series
- 11% Preț: 455.57 lei
- 8% Preț: 446.84 lei
- 14% Preț: 1168.11 lei
- 8% Preț: 423.03 lei
- 11% Preț: 575.34 lei
- 8% Preț: 448.27 lei
- Preț: 349.77 lei
- 8% Preț: 389.36 lei
- 9% Preț: 710.05 lei
- 8% Preț: 460.72 lei
- 8% Preț: 402.17 lei
- Preț: 358.07 lei
- 8% Preț: 410.87 lei
- Preț: 295.14 lei
- 8% Preț: 411.75 lei
- 8% Preț: 521.93 lei
- 11% Preț: 591.84 lei
- 8% Preț: 410.56 lei
- 11% Preț: 661.21 lei
- 11% Preț: 452.20 lei
- 8% Preț: 531.21 lei
- 8% Preț: 496.10 lei
- 11% Preț: 665.42 lei
- Preț: 369.80 lei
- 11% Preț: 556.96 lei
- 14% Preț: 681.27 lei
- 11% Preț: 476.51 lei
- Preț: 300.95 lei
- Preț: 434.69 lei
- 11% Preț: 473.00 lei
- Preț: 308.10 lei
- Preț: 305.28 lei
- Preț: 302.45 lei
- Preț: 307.19 lei
- Preț: 308.81 lei
- 11% Preț: 473.33 lei
- Preț: 425.59 lei
- Preț: 305.87 lei
- Preț: 302.66 lei
- 11% Preț: 426.01 lei
- Preț: 388.56 lei
- Preț: 433.77 lei
- 11% Preț: 406.98 lei
- Preț: 388.19 lei
- Preț: 340.53 lei
- 11% Preț: 407.32 lei
- Preț: 295.64 lei
- Preț: 385.91 lei
- 11% Preț: 447.33 lei
- 11% Preț: 471.82 lei
Preț: 439.05 lei
Nou
Puncte Express: 659
Preț estimativ în valută:
84.03€ • 87.28$ • 69.80£
84.03€ • 87.28$ • 69.80£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780521154338
ISBN-10: 0521154332
Pagini: 264
Dimensiuni: 152 x 228 x 15 mm
Greutate: 0.39 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria London Mathematical Society Lecture Note Series
Locul publicării:Cambridge, United Kingdom
ISBN-10: 0521154332
Pagini: 264
Dimensiuni: 152 x 228 x 15 mm
Greutate: 0.39 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria London Mathematical Society Lecture Note Series
Locul publicării:Cambridge, United Kingdom
Cuprins
Preface; Acknowledgements; Introduction; Part I. Basics: 1. The definition of the models; 2. Measure on β; 3. Witnessing quantifiers; 4. The truth in N and the validity in K(F); Part II. Second Order Structures: 5. Structures K(F,G); Part III. AC0 World: 6. Theories IΔ0, IΔ0(R) and V10; 7. Shallow Boolean decision tree model; 8. Open comprehension and open induction; 9. Comprehension and induction via quantifier elimination: a general reduction; 10. Skolem functions, switching lemma, and the tree model; 11. Quantifier elimination in K(Ftree,Gtree); 12. Witnessing, independence and definability in V10; Part IV. AC0(2) World: 13. Theory Q2V10; 14. Algebraic model; 15. Quantifier elimination and the interpretation of Q2; 16. Witnessing and independence in Q2V10; Part V. Towards Proof Complexity: 17. Propositional proof systems; 18. An approach to lengths-of-proofs lower bounds; 19. PHP principle; Part VI. Proof Complexity of Fd and Fd(+): 20. A shallow PHP model; 21. Model K(Fphp,Gphp) of V10; 22. Algebraic PHP model?; Part VII. Polynomial-Time and Higher Worlds: 23. Relevant theories; 24. Witnessing and conditional independence results; 25. Pseudorandom sets and a Löwenheim–Skolem phenomenon; 26. Sampling with oracles; Part VIII. Proof Complexity of EF and Beyond: 27. Fundamental problems in proof complexity; 28. Theories for EF and stronger proof systems; 29. Proof complexity generators: definitions and facts; 30. Proof complexity generators: conjectures; 31. The local witness model; Appendix. Non-standard models and the ultrapower construction; Standard notation, conventions and list of symbols; References; Name index; Subject index.
Recenzii
"Jan Krajíček is the leading expert on these problems and in this book he provides a new approach to builing models of bounded arithmetic which combines methods and techniques from model theory, forcing and computational complexity. Personally, I find Krajíček's approach a highly stimulating collage of ideas. I recommend this book strongly to anyone interested in logical approaches to fundamental problems in complexity theory."
Soren M. Riis for Mathematical Reviews
Soren M. Riis for Mathematical Reviews
Notă biografică
Descriere
A model-theoretic approach to bounded arithmetic and propositional proof complexity.