Cantitate/Preț
Produs

Compactification of Siegel Moduli Schemes: London Mathematical Society Lecture Note Series, cartea 107

Editat de Ching-Li Chai
en Limba Engleză Paperback – 11 dec 1985
The Siegel moduli scheme classifies principally polarised abelian varieties and its compactification is an important result in arithmetic algebraic geometry. The main result of this monograph is to prove the existence of the toroidal compactification over Z (1/2). This result should have further applications and is presented here with sufficient background material to make the book suitable for seminar courses in algebraic geometry, algebraic number theory or automorphic forms.
Citește tot Restrânge

Din seria London Mathematical Society Lecture Note Series

Preț: 46487 lei

Preț vechi: 52232 lei
-11% Nou

Puncte Express: 697

Preț estimativ în valută:
8897 9386$ 7414£

Carte tipărită la comandă

Livrare economică 02-16 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780521312530
ISBN-10: 0521312531
Pagini: 344
Ilustrații: 1
Dimensiuni: 153 x 230 x 22 mm
Greutate: 0.55 kg
Ediția:00003
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria London Mathematical Society Lecture Note Series

Locul publicării:Cambridge, United Kingdom

Cuprins

Introduction; 1. Review of the Siegel moduli schemes; 2. Analytic quotient construction of families of degenerating abelian varieties; 3. Test families as co-ordinates at the boundary; 4. Propagation of Tai's theorem to positive characteristics; 5. Application to Siegel modular forms; Appendixes, Bibliography; Index.

Descriere

The main result of this monograph is to prove the existence of the toroidal compactification over Z(1/2).