The Maximal Subgroups of the Low-Dimensional Finite Classical Groups
Autor John N. Bray, Derek F. Holt, Colva M. Roney-Dougalen Limba Engleză Paperback – 24 iul 2013
Preț: 486.33 lei
Preț vechi: 546.44 lei
-11% Nou
Puncte Express: 729
Preț estimativ în valută:
93.08€ • 95.93$ • 78.58£
93.08€ • 95.93$ • 78.58£
Carte tipărită la comandă
Livrare economică 04-18 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780521138604
ISBN-10: 0521138604
Pagini: 452
Ilustrații: 100 tables 20 exercises
Dimensiuni: 152 x 228 x 23 mm
Greutate: 0.64 kg
Ediția:New.
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:Cambridge, United Kingdom
ISBN-10: 0521138604
Pagini: 452
Ilustrații: 100 tables 20 exercises
Dimensiuni: 152 x 228 x 23 mm
Greutate: 0.64 kg
Ediția:New.
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:Cambridge, United Kingdom
Cuprins
Preface; 1. Introduction; 2. The main theorem, and types of geometric subgroups; 3. Geometric maximal subgroups; 4. Groups in class S: cross characteristic; 5. Groups in Class S: defining characteristic; 6. Containments involving S-subgroups; 7. Maximal subgroups of exceptional groups; 8. Tables.
Recenzii
'The study of the maximal subgroups of the finite classical groups started long ago. Their understanding has been crucial in the work on the classification of finite simple groups. The methods [in this book] efficiently combine theoretical techniques together with computer algebra systems (GAP, Magma), with the computational files available [online] … The theoretical literature on the subject is highly exploited, especially Aschbacher's results which describe the maximal subgroups of most of the finite almost simple classical groups … The tables are packed with a great amount of information, and should satisfy the reader who is looking for some specific information about the structure of the maximal subgroups of a given classical group.' Nadia P. Mazza, Mathematical Reviews
Notă biografică
Descriere
Classifies the maximal subgroups of the finite groups of Lie type up to dimension 12, using theoretical and computational methods.