The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions: Graduate Texts in Mathematics, cartea 203
Autor Bruce E. Saganen Limba Engleză Paperback – dec 2010
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 419.21 lei 43-57 zile | |
Springer – dec 2010 | 419.21 lei 43-57 zile | |
Hardback (1) | 490.46 lei 43-57 zile | |
Springer – 20 apr 2001 | 490.46 lei 43-57 zile |
Din seria Graduate Texts in Mathematics
- 17% Preț: 528.66 lei
- Preț: 402.87 lei
- Preț: 383.85 lei
- Preț: 337.45 lei
- 17% Preț: 398.97 lei
- Preț: 355.82 lei
- Preț: 411.83 lei
- Preț: 404.47 lei
- Preț: 289.88 lei
- 17% Preț: 365.79 lei
- 17% Preț: 359.45 lei
- 15% Preț: 488.70 lei
- Preț: 381.92 lei
- 13% Preț: 357.75 lei
- Preț: 407.88 lei
- 13% Preț: 352.49 lei
- 13% Preț: 358.86 lei
- 13% Preț: 393.48 lei
- 11% Preț: 351.00 lei
- 17% Preț: 359.58 lei
- Preț: 350.45 lei
- Preț: 399.74 lei
- Preț: 498.91 lei
- 20% Preț: 571.26 lei
- 15% Preț: 546.59 lei
- Preț: 498.69 lei
- 15% Preț: 354.39 lei
- Preț: 313.10 lei
- 13% Preț: 427.39 lei
- 17% Preț: 363.59 lei
- Preț: 340.18 lei
- 17% Preț: 364.47 lei
- 17% Preț: 366.47 lei
- 17% Preț: 366.06 lei
- Preț: 247.59 lei
- 17% Preț: 367.70 lei
- 13% Preț: 356.79 lei
- 17% Preț: 398.78 lei
- 17% Preț: 398.51 lei
- 17% Preț: 496.63 lei
- 15% Preț: 482.97 lei
- Preț: 401.99 lei
- 17% Preț: 366.56 lei
- 20% Preț: 449.73 lei
- Preț: 380.34 lei
- 17% Preț: 427.27 lei
- Preț: 358.07 lei
Preț: 419.21 lei
Nou
Puncte Express: 629
Preț estimativ în valută:
80.22€ • 83.96$ • 66.76£
80.22€ • 83.96$ • 66.76£
Carte tipărită la comandă
Livrare economică 31 martie-14 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781441928696
ISBN-10: 1441928693
Pagini: 260
Ilustrații: XVI, 240 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.37 kg
Ediția:Softcover reprint of hardcover 2nd ed. 2001
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 1441928693
Pagini: 260
Ilustrații: XVI, 240 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.37 kg
Ediția:Softcover reprint of hardcover 2nd ed. 2001
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
1 Group Representations.- 2 Representations of the Symmetric Group.- 3 Combinatorial Algorithms.- 4 Symmetric Functions.- 5 Applications and Generalizations.
Recenzii
From the reviews of the second edition:
"This work is an introduction to the representation theory of the symmetric group. Unlike other books on the subject this text deals with the symmetric group from three different points of view: general representation theory, combinatorial algorithms and symmetric functions. ... This book is a digestible text for a graduate student and is also useful for a researcher in the field of algebraic combinatorics for reference." (Attila Maróti, Acta Scientiarum Mathematicarum, Vol. 68, 2002)
"A classic gets even better. ... The edition has new material including the Novelli-Pak-Stoyanovskii bijective proof of the hook formula, Stanley’s proof of the sum of squares formula using differential posets, Fomin’s bijective proof of the sum of squares formula, group acting on posets and their use in proving unimodality, and chromatic symmetric functions." (David M. Bressoud, Zentralblatt MATH, Vol. 964, 2001)
"This work is an introduction to the representation theory of the symmetric group. Unlike other books on the subject this text deals with the symmetric group from three different points of view: general representation theory, combinatorial algorithms and symmetric functions. ... This book is a digestible text for a graduate student and is also useful for a researcher in the field of algebraic combinatorics for reference." (Attila Maróti, Acta Scientiarum Mathematicarum, Vol. 68, 2002)
"A classic gets even better. ... The edition has new material including the Novelli-Pak-Stoyanovskii bijective proof of the hook formula, Stanley’s proof of the sum of squares formula using differential posets, Fomin’s bijective proof of the sum of squares formula, group acting on posets and their use in proving unimodality, and chromatic symmetric functions." (David M. Bressoud, Zentralblatt MATH, Vol. 964, 2001)