Cantitate/Preț
Produs

Advanced Topics in the Arithmetic of Elliptic Curves: Graduate Texts in Mathematics, cartea 151

Autor Joseph H. Silverman
en Limba Engleză Paperback – 4 noi 1994
In the introduction to the first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume. it turned out that even those ten topics would not fit Unfortunately, into a single book, so I was forced to make some choices. The following material is covered in this book: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Neron models, Kodaira-Neron classification of special fibers, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Neron's theory of canonical local height functions.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 36579 lei  3-5 săpt. +3213 lei  4-10 zile
  Springer – 4 noi 1994 36579 lei  3-5 săpt. +3213 lei  4-10 zile
Hardback (1) 60275 lei  6-8 săpt.
  Springer – 4 noi 1994 60275 lei  6-8 săpt.

Din seria Graduate Texts in Mathematics

Preț: 36579 lei

Preț vechi: 44071 lei
-17% Nou

Puncte Express: 549

Preț estimativ în valută:
7001 7215$ 5911£

Carte disponibilă

Livrare economică 10-24 februarie
Livrare express 24-30 ianuarie pentru 4212 lei

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387943282
ISBN-10: 0387943285
Pagini: 528
Ilustrații: XIII, 528 p.
Dimensiuni: 155 x 235 x 29 mm
Greutate: 0.76 kg
Ediția:1994
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics

Locul publicării:New York, NY, United States

Public țintă

Graduate

Cuprins

1.- I Elliptic and Modular Functions.- §1. The Modular Group.- §2. The Modular Curve X(1).- §3. Modular Functions.- §4. Uniformization and Fields of Moduli.- §5. Elliptic Functions Revisited.- §6. q-Expansions of Elliptic Functions.- §7. q-Expansions of Modular Functions.- §8. Jacobi’s Product Formula for ?(?).- §9. Hecke Operators.- §10. Hecke Operators Acting on Modular Forms.- §11. L-Series Attached to Modular Forms.- Exercises.- II Complex Multiplication.- §1. Complex Multiplication over C.- §2. Rationality Questions.- §3. Class Field Theory — A Brief Review.- §4. The Hilbert Class Field.- §5. The Maximal Abelian Extension.- §6. Integrality of j.- §7. Cyclotomic Class Field Theory.- §8. The Main Theorem of Complex Multiplication.- §9. The Associated Grössencharacter.- §10. The L-Series Attached to a CM Elliptic Curve.- Exercises.- III Elliptic Surfaces.- §1. Elliptic Curves over Function Fields.- §2. The Weak Mordell-Weil Theorem.- §3. Elliptic Surfaces.- §4. Heights on Elliptic Curves over Function Fields.- §5. Split Elliptic Surfaces and Sets of Bounded Height.- §6. The Mordell-Weil Theorem for Function Fields.- §7. The Geometry of Algebraic Surfaces.- §8. The Geometry of Fibered Surfaces.- §9. The Geometry of Elliptic Surfaces.- §10. Heights and Divisors on Varieties.- §11. Specialization Theorems for Elliptic Surfaces.- §12. Integral Points on Elliptic Curves over Function Fields.- Exercises.- IV The Néron Model.- §1. Group Varieties.- §2. Schemes and S-Schemes.- §3. Group Schemes.- §4. Arithmetic Surfaces.- §5. Néron Models.- §6. Existence of Néron Models.- §7. Intersection Theory, Minimal Models, and Blowing-Up.- §8. The Special Fiber of a Néron Model.- §9. Tate’s Algorithm to Compute the Special Fiber.-§10. The Conductor of an Elliptic Curve.- §11. Ogg’s Formula.- Exercises.- V Elliptic Curves over Complete Fields.- §1. Elliptic Curves over ?.- §2. Elliptic Curves over ?.- §3. The Tate Curve.- §4. The Tate Map Is Surjective.- §5. Elliptic Curves over p-adic Fields.- §6. Some Applications of p-adic Uniformization.- Exercises.- VI Local Height Functions.- §1. Existence of Local Height Functions.- §2. Local Decomposition of the Canonical Height.- §3. Archimedean Absolute Values — Explicit Formulas.- §4. Non-Archimedean Absolute Values — Explicit Formulas.- Exercises.- Appendix A Some Useful Tables.- §3. Elliptic Curves over ? with Complex Multiplication.- Notes on Exercises.- References.- List of Notation.