Cantitate/Preț
Produs

Drinfeld Modules: Graduate Texts in Mathematics, cartea 296

Autor Mihran Papikian
en Limba Engleză Hardback – apr 2023
This textbook offers an introduction to the theory of Drinfeld modules, mathematical objects that are fundamental to modern number theory.

After the first two chapters conveniently recalling prerequisites from abstract algebra and non-Archimedean analysis, Chapter 3 introduces Drinfeld modules and the key notions of isogenies and torsion points. Over the next four chapters, Drinfeld modules are studied in settings of various fields of arithmetic importance, culminating in the case of global fields. Throughout, numerous number-theoretic applications are discussed, and the analogies between classical and function field arithmetic are emphasized.

Drinfeld Modules guides readers from the basics to research topics in function field arithmetic, assuming only familiarity with graduate-level abstract algebra as prerequisite. With exercises of varying difficulty included in each section, the book is designed to be used as the primary textbook for a graduate course on the topic, and may also provide a supplementary reference for courses in algebraic number theory, elliptic curves, and related fields. Furthermore, researchers in algebra and number theory will appreciate it as a self-contained reference on the topic.


Citește tot Restrânge

Din seria Graduate Texts in Mathematics

Preț: 49663 lei

Preț vechi: 59835 lei
-17% Nou

Puncte Express: 745

Preț estimativ în valută:
9504 9873$ 7895£

Carte disponibilă

Livrare economică 11-25 ianuarie 25
Livrare express 31 decembrie 24 - 04 ianuarie 25 pentru 5009 lei

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031197062
ISBN-10: 3031197062
Pagini: 526
Ilustrații: XXI, 526 p. 1 illus.
Dimensiuni: 155 x 235 x 37 mm
Greutate: 0.98 kg
Ediția:2023
Editura: Springer International Publishing
Colecția Springer
Seria Graduate Texts in Mathematics

Locul publicării:Cham, Switzerland

Cuprins

Preface.- Acknowledgements.- Notation and Conventions.- Chapter 1. Algebraic Preliminaries.- Chapter 2. Non-Archimedean Fields.- Chapter 3. Basic Properties of Drinfeld Modules.- Chapter 4. Drinfeld Modules over Finite Fields.- Chapter 5. Analytic Theory of Drinfeld Modules.- Chapter 6. Drinfeld Modules over Local Fields.- Chapter 7. Drinfeld Modules over Global Fields.- Appendix A. Drinfeld modules for general function rings.- Appendix B. Notes on exercises.- Bibliography.- Index.

Recenzii

“This is an excellent textbook suitable for graduate courses and for the self-study of novices, but also for experienced mathematicians who want to enter the field. I bet it will become the canonical reference in the field.” (Ernst-Ulrich Gekeler, Mathematical Reviews, May, 2024)

Notă biografică

Mihran Papikian received his Ph.D. from the University of Michigan in 2003. After a post-doctoral position at Stanford University, he joined the Mathematics Department of the Pennsylvania State University as a tenure-track assistant professor in 2007, becoming full professor in 2020. His research interests lie in arithmetic geometry and number theory, with an emphasis on the theory of Drinfeld modules, modular varieties, and elliptic curves. He has taught graduate courses in algebra, number theory, and various specialized topics, including Drinfeld modules.





Textul de pe ultima copertă

This textbook offers an introduction to the theory of Drinfeld modules, mathematical objects that are fundamental to modern number theory.

After the first two chapters conveniently recalling prerequisites from abstract algebra and non-Archimedean analysis, Chapter 3 introduces Drinfeld modules and the key notions of isogenies and torsion points. Over the next four chapters, Drinfeld modules are studied in settings of various fields of arithmetic importance, culminating in the case of global fields. Throughout, numerous number-theoretic applications are discussed, and the analogies between classical and function field arithmetic are emphasized.

Drinfeld Modules guides readers from the basics to research topics in function field arithmetic, assuming only familiarity with graduate-level abstract algebra as prerequisite. With exercises of varying difficulty included in each section, the book is designed to be used as the primary textbook for a graduate course on the topic, and may also provide a supplementary reference for courses in algebraic number theory, elliptic curves, and related fields. Furthermore, researchers in algebra and number theory will appreciate it as a self-contained reference on the topic

Caracteristici

Offers an accessible introduction to Drinfeld modules Features a hands-on, "computational" style, containing numerous exercises Provides a self-contained, high-quality reference for researchers