Cantitate/Preț
Produs

An Introduction to Automorphic Representations: With a view toward trace formulae: Graduate Texts in Mathematics, cartea 300

Autor Jayce R. Getz, Heekyoung Hahn
en Limba Engleză Hardback – 2 mar 2024
The goal of this textbook is to introduce and study automorphic representations, objects at the very core of the Langlands Program. It is designed for use as a primary text for either a semester or a year-long course, for the independent study of advanced topics, or as a reference for researchers. The reader is taken from the beginnings of the subject to the forefront of contemporary research.  The journey provides an accessible gateway to one of the most fundamental areas of modern mathematics, with deep connections to arithmetic geometry, representation theory, harmonic analysis, and mathematical physics.
The first part of the text is dedicated to developing the notion of automorphic representations. Next, it states a rough version of the Langlands functoriality conjecture, motivated by the description of unramified admissible representations of reductive groups over nonarchimedean local fields. The next chapters develop the theory necessary to make the Langlands functoriality conjecture precise.  Thus supercuspidal representations are defined locally, cuspidal representations and Eisenstein series are defined globally, and Rankin-Selberg L-functions are defined to give a link between the global and local settings. This preparation complete, the global Langlands functoriality conjectures are stated and known cases are discussed.
This is followed by a treatment of distinguished representations in global and local settings.  The link between distinguished representations and geometry is explained in a chapter on the cohomology of locally symmetric spaces (in particular, Shimura varieties).  The trace formula, an immensely powerful tool in the Langlands Program, is discussed in the final chapters of the book.  Simple versions of the general relative trace formulae are treated for the first time in a textbook, and a wealth of related material on algebraic group actions is included.  Outlines for several possible courses are provided in the Preface.


Citește tot Restrânge

Din seria Graduate Texts in Mathematics

Preț: 36179 lei

Preț vechi: 41585 lei
-13% Nou

Puncte Express: 543

Preț estimativ în valută:
6924 7219$ 5754£

Carte tipărită la comandă

Livrare economică 20 martie-03 aprilie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031411519
ISBN-10: 303141151X
Pagini: 609
Ilustrații: XVIII, 609 p. 1 illus.
Dimensiuni: 155 x 235 x 37 mm
Greutate: 1.16 kg
Ediția:2024
Editura: Springer International Publishing
Colecția Springer
Seria Graduate Texts in Mathematics

Locul publicării:Cham, Switzerland

Cuprins

1. Affine Algebraic Groups.- 2. Adeles.- 3. Discrete Automorphic Representations.- 4. Archimedean Representation Theory.- 5. Representations of Totally Disconnected Groups.- 6. Automorphic Forms.- 7. Unramified Representations.- 8. Nonarchimedean Representation Theory.- 9. The Cuspidal Spectrum.- 10. Einsenstein Series.- 11. Rankin-Selberg L-functions.- 12. Langlands Functoriality.- 13. Known Cases of Global Langlands Functoriality.- 14. Distinction and Period Integrals.- 15. The Cohomology of Locally Symmetric Spaces.- 16. Spectral Sides of the Trace Formulae.- 17. Orbital Integrals.- 18. Simple Trace Formulae.- 19. Applications of Trace Formulae.- A. Groups attached to involutions of algebras.- B. The Iwasawa Decomposition.- C. Poisson Summation.- D. Alternate conventions related to adelic quotients.- Hints to selected exercises.- References.- Index.

Notă biografică

Jayce R. Getz is Associate Professor of Mathematics at Duke University. His research in number theory spans several subjects --- algebraic geometry, automorphic representations, harmonic analysis, and trace formulae. His monograph with M. Goresky (Institute for Advanced Studies), Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change, was awarded the 2011 Ferran Sunyer i Balaguer Prize.
Heekyoung Hahn is Associate Research Professor of Mathematics at Duke University. Her research covers additive combinatorics, Langlands functoriality, and related issues in the representation theory of algebraic groups.

Textul de pe ultima copertă

The goal of this textbook is to introduce and study automorphic representations, objects at the very core of the Langlands Program. It is designed for use as a primary text for either a semester or a year-long course, for the independent study of advanced topics, or as a reference for researchers. The reader is taken from the beginnings of the subject to the forefront of contemporary research.  The journey provides an accessible gateway to one of the most fundamental areas of modern mathematics, with deep connections to arithmetic geometry, representation theory, harmonic analysis, and mathematical physics. The first part of the text is dedicated to developing the notion of automorphic representations. Next, it states a rough version of the Langlands functoriality conjecture, motivated by the description of unramified admissible representations of reductive groups over nonarchimedean local fields. The next chapters develop the theory necessary to make the Langlands functoriality conjecture precise.  Thus supercuspidal representations are defined locally, cuspidal representations and Eisenstein series are defined globally, and Rankin-Selberg L-functions are defined to give a link between the global and local settings. This preparation complete, the global Langlands functoriality conjectures are stated and known cases are discussed.
This is followed by a treatment of distinguished representations in global and local settings.  The link between distinguished representations and geometry is explained in a chapter on the cohomology of locally symmetric spaces (in particular, Shimura varieties).  The trace formula, an immensely powerful tool in the Langlands Program, is discussed in the final chapters of the book.  Simple versions of the general relative trace formulae are treated for the first time in a textbook, and a wealth of related material on algebraic group actions is included.  Outlines for several possible courses are provided in the Preface.

Caracteristici

Provides a detailed yet accessible introduction to the Langlands Program Covers advanced topics that are rarely treated in textbooks, ex. the trace formula and Galois representations Serves as a highly readable entry guide to a central, and exciting, area of modern mathematics