Cantitate/Preț
Produs

Rectifiability: A Survey: London Mathematical Society Lecture Note Series, cartea 483

Autor Pertti Mattila
en Limba Engleză Paperback – 11 ian 2023
Rectifiable sets, measures, currents and varifolds are foundational concepts in geometric measure theory. The last four decades have seen the emergence of a wealth of connections between rectifiability and other areas of analysis and geometry, including deep links with the calculus of variations and complex and harmonic analysis. This short book provides an easily digestible overview of this wide and active field, including discussions of historical background, the basic theory in Euclidean and non-Euclidean settings, and the appearance of rectifiability in analysis and geometry. The author avoids complicated technical arguments and long proofs, instead giving the reader a flavour of each of the topics in turn while providing full references to the wider literature in an extensive bibliography. It is a perfect introduction to the area for researchers and graduate students, who will find much inspiration for their own research inside.
Citește tot Restrânge

Din seria London Mathematical Society Lecture Note Series

Preț: 46152 lei

Preț vechi: 51855 lei
-11% Nou

Puncte Express: 692

Preț estimativ în valută:
8833 9186$ 7391£

Carte disponibilă

Livrare economică 21 februarie-07 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781009288088
ISBN-10: 1009288083
Pagini: 182
Dimensiuni: 153 x 230 x 10 mm
Greutate: 0.27 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria London Mathematical Society Lecture Note Series

Locul publicării:Cambridge, United Kingdom

Cuprins

Introduction; 1. Preliminaries; 2. Rectifiable curves; 3. One-dimensional rectifiable sets; 4. Higher dimensional rectifiable sets; 5. Uniform rectifiability; 6. Rectifiability of measures; 7. Rectifiable sets in metric spaces; 8. Heisenberg and Carnot groups; 9. Bounded analytic functions and the Cauchy transform; 10. Singular integrals; 11. Harmonic measure and elliptic measures; 12. Sets of finite perimeter and functions of bounded variation; 13. Currents and varifolds; 14. Minimizers and quasiminimizers; 15. Rectifiability of singularities; 16. Miscellaneous topics related to rectifiability; References; Index.

Notă biografică


Descriere

A broad survey of the theory of rectifiability and its deep connections to numerous different areas of mathematics.