Cantitate/Preț
Produs

An Information Theoretic Approach to Econometrics

Autor George G. Judge, Ron C. Mittelhammer
en Limba Engleză Paperback – 11 dec 2011
This book is intended to provide the reader with a firm conceptual and empirical understanding of basic information-theoretic econometric models and methods. Because most data are observational, practitioners work with indirect noisy observations and ill-posed econometric models in the form of stochastic inverse problems. Consequently, traditional econometric methods in many cases are not applicable for answering many of the quantitative questions that analysts wish to ask. After initial chapters deal with parametric and semiparametric linear probability models, the focus turns to solving nonparametric stochastic inverse problems. In succeeding chapters, a family of power divergence measure-likelihood functions are introduced for a range of traditional and nontraditional econometric-model problems. Finally, within either an empirical maximum likelihood or loss context, Ron C. Mittelhammer and George G. Judge suggest a basis for choosing a member of the divergence family.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 25896 lei  6-8 săpt.
  Cambridge University Press – 11 dec 2011 25896 lei  6-8 săpt.
Hardback (1) 55683 lei  6-8 săpt.
  Cambridge University Press – 11 dec 2011 55683 lei  6-8 săpt.

Preț: 25896 lei

Nou

Puncte Express: 388

Preț estimativ în valută:
4956 5142$ 4142£

Carte tipărită la comandă

Livrare economică 15-29 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780521689731
ISBN-10: 0521689732
Pagini: 248
Ilustrații: 13 b/w illus. 7 tables
Dimensiuni: 152 x 228 x 13 mm
Greutate: 0.34 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States

Cuprins

Preface; 1. Econometric information recovery; Part I. Traditional Parametric and Semiparametric Probability Models: Estimation and Inference: 2. Formulation and analysis of parametric and semiparametric linear models; 3. Method of moments, GMM, and estimating equations; Part II. Formulation and Solution of Stochastic Inverse Problems: 4. A stochastic-empirical likelihood inverse problem: formulation and estimation; 5. A stochastic-empirical likelihood inverse problem: inference; 6. Kullback-Leibler information and the maximum empirical exponential likelihood; Part III. A Family of Minimum Discrepancy Estimators: 7. The Cressie-Read family of divergence measures and likelihood functions; 8. Cressie-Read-MEL-type estimators in practice: evidence of estimation and inference sampling performance; Part IV. Binary Discrete Choice MPD-EML Econometric Models: 9. Family of distribution functions for the binary response-choice model; 10. Estimation and inference for the binary response model based on the MPD family of distributions; Part V. Optimal Convex Divergence: 11. Choosing the optimal divergence under quadratic loss; 12. Epilogue.

Recenzii

'Taking us beyond traditional econometric estimation and inference, this landmark text leads us carefully through the modern literature on empirical likelihood methods to an extremely compelling new methodology. The authors present a clear and compelling case for recognizing econometric problems for what they really are - namely, ill-posed noisy inverse problems. By showing how very general information-theoretic methods can be used in a natural way to solve such problems, Judge and Mittelhammer break new ground and set a new standard for the econometric community.' David Giles, University of Victoria, Canada
'This beautifully written book pushes the frontiers of econometrics in three ways. First, it provides a clear connection between the more traditional econometric and information-theoretic estimation methods. Second, it provides a detailed state of the art presentation of information-theoretic methods within econometrics. Third, it illustrates the wide applicability of information-theoretic methods for learning from data. The book is a great resource for graduate students and researchers at all levels. The authors - two of the leading econometricians and experts in information-theoretic methods - are to be congratulated.' Amos Golan, Info-Metrics Institute, American University
'Judge and Mittelhammer masterfully demonstrate the power of the information divergence-based approach to econometric information recovery, and expand it in new directions. Clarity of exposition, typical for the authors, makes this research monograph highly accessible to both researchers and students of econometrics.' Marian Grendár, Matej Bel University, Slovakia
'This book, written by two outstanding experts in the field, will be a valuable resource for empirical and theoretical researchers interested in the topic of information-theoretic econometric methods.' Patrik Guggenberger, University of California, San Diego
'This is a definitive book: Judge and Mittelhammer are legendary architects of modern information econometrics. It provides both a practical exposition to the subject matter, as well as an extremely thorough presentation of the underlying statistical analysis of information theory and empirical likelihood applied to econometrics models. I highly recommend this book, which will be widely read, referenced, and used by students, instructors and researchers in the areas of econometrics, economics, statistics and other applied sciences.' Aman Ullah, University of California, Riverside

Notă biografică


Descriere

Intended to provide the reader with a firm conceptual and empirical understanding of basic information-theoretic econometric models and methods.