An Introduction to Algebraic Number Theory: University Series in Mathematics
Autor Takashi Onoen Limba Engleză Paperback – 30 iul 2013
Din seria University Series in Mathematics
- 18% Preț: 1180.37 lei
- 18% Preț: 963.08 lei
- 18% Preț: 920.43 lei
- 15% Preț: 617.90 lei
- 18% Preț: 1332.50 lei
- 15% Preț: 616.34 lei
- 15% Preț: 621.05 lei
- 18% Preț: 849.50 lei
- 18% Preț: 1523.52 lei
- 15% Preț: 614.30 lei
- 15% Preț: 625.46 lei
- Preț: 383.55 lei
- 15% Preț: 621.05 lei
- 18% Preț: 753.54 lei
- 18% Preț: 917.99 lei
- 18% Preț: 700.86 lei
- Preț: 367.64 lei
- 5% Preț: 637.10 lei
- 15% Preț: 588.62 lei
Preț: 853.32 lei
Preț vechi: 1040.64 lei
-18% Nou
Puncte Express: 1280
Preț estimativ în valută:
163.31€ • 172.29$ • 136.10£
163.31€ • 172.29$ • 136.10£
Carte tipărită la comandă
Livrare economică 02-16 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461278726
ISBN-10: 1461278724
Pagini: 240
Ilustrații: XI, 223 p.
Dimensiuni: 152 x 229 x 13 mm
Greutate: 0.33 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: Springer Us
Colecția Springer
Seria University Series in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 1461278724
Pagini: 240
Ilustrații: XI, 223 p.
Dimensiuni: 152 x 229 x 13 mm
Greutate: 0.33 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: Springer Us
Colecția Springer
Seria University Series in Mathematics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. To the Gauss Reciprocity Law.- 1.1. Basic Facts.- 1.2. Modules in ?.- 1.3. Euclidean Algorithm and Continued Fractions.- 1.4. Continued-Fraction Expansion of Irrational Numbers.- 1.5. Concept of Groups.- 1.6. Subgroups and Quotient Groups.- 1.7. Ideals and Quotient Rings.- 1.8. Isomorphisms and Homomorphisms.- 1.9. Polynomial Rings.- 1.10. Primitive Roots.- 1.11. Algebraic Integers.- 1.12. Characters of Abelian Groups.- 1.13. The Gauss Reciprocity Law.- 2. Basic Concepts of Algebraic Number Fields.- 2.1. Field Extensions.- 2.2. Galois Theory.- 2.3. Norm, Trace, and Discriminant.- 2.4. Gauss Sum and Jacobi Sum.- 2.5. Construction of a Regular l-gon.- 2.6. Subfields of the lth Cyclotomic Field.- 2.7. Cohomology of Cyclic Groups.- 2.8. Finite Fields.- 2.9. Ring of Integers, Ideals, and Discriminant.- 2.10. Fundamental Theorem of Ideal Theory.- 2.11. Residue Class Rings.- 2.12. Decomposition of Primes in Number Fields.- 2.13. Discriminant and Ramification.- 2.14. Hilbert Theory.- 2.15.Artin Map.- 2.16. Artin Maps of Subfields of the lth Cyclotomic Field.- 2.17. The Artin Map in Quadratic Fields.- 3. Analytic Methods.- 3.1 Lattices in ?n.- 3.2. Minkowski’s Theorem.- 3.3. Dirichlet’s Unit Theorem.- 3.4. Pre-Zeta Functions.- 3.5. Dedekind Zeta Function.- 3.6. The mth Cyclotomic Field.- 3.7. Dirichlet L-Functions.- 3.8. Dirichlet’s Theorem on Arithmetical Progressions.- 4. The lth Cyclotomic Field and Quadratic Fields.- 4.1. Determination of Gauss Sums.- 4.2. L-Functions and Gauss Sums.- 4.3. Class Numbers of Subfields of the lth Cyclotomic Field.- 4.4. Class Number of ?$$(\sqrt {{l^*}} )$$.- 4.5. Ideal Class Groups of Quadratic Fields.- 4.6. Cohomology of Quadratic Fields.- 4.7. Gauss Genus Theory.- 4.8. Quadratic Irrationals.- 4.9. Real Quadratic Fields and Continued Fractions.- Answers and Hints to Exercises.- Notes.- A. Peano Axioms.- B. Fundamental Theorem of Algebra.- C. Zorn’s Lemma.- D. Quadratic Fields and Quadratic Forms.- List of Mathematicians.- Comments onthe Bibliography.