Sheaf Theory: Graduate Texts in Mathematics, cartea 170
Autor Glen E. Bredonen Limba Engleză Paperback – 28 sep 2012
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 510.17 lei 6-8 săpt. | |
Springer – 28 sep 2012 | 510.17 lei 6-8 săpt. | |
Hardback (1) | 544.50 lei 6-8 săpt. | |
Springer – 24 ian 1997 | 544.50 lei 6-8 săpt. |
Din seria Graduate Texts in Mathematics
- Preț: 402.87 lei
- 17% Preț: 528.66 lei
- Preț: 383.85 lei
- Preț: 337.45 lei
- 17% Preț: 398.97 lei
- Preț: 355.82 lei
- Preț: 404.47 lei
- Preț: 289.88 lei
- 17% Preț: 365.79 lei
- 17% Preț: 359.45 lei
- Preț: 450.64 lei
- 15% Preț: 488.70 lei
- 17% Preț: 430.49 lei
- Preț: 431.31 lei
- 13% Preț: 357.75 lei
- Preț: 407.88 lei
- 13% Preț: 393.48 lei
- 11% Preț: 351.00 lei
- 17% Preț: 359.58 lei
- Preț: 399.74 lei
- Preț: 498.91 lei
- 20% Preț: 571.26 lei
- 15% Preț: 546.59 lei
- Preț: 498.69 lei
- 15% Preț: 354.39 lei
- Preț: 313.10 lei
- 13% Preț: 427.39 lei
- 17% Preț: 363.59 lei
- Preț: 340.18 lei
- 17% Preț: 364.47 lei
- 17% Preț: 366.47 lei
- 17% Preț: 366.06 lei
- Preț: 247.59 lei
- 17% Preț: 367.70 lei
- 13% Preț: 356.79 lei
- 17% Preț: 398.78 lei
- 17% Preț: 398.51 lei
- 17% Preț: 496.63 lei
- 13% Preț: 361.79 lei
- 15% Preț: 482.97 lei
- Preț: 401.99 lei
- 17% Preț: 366.56 lei
- 20% Preț: 449.73 lei
- Preț: 380.34 lei
- Preț: 364.79 lei
- 17% Preț: 427.27 lei
- Preț: 358.07 lei
- Preț: 405.00 lei
- 17% Preț: 395.87 lei
- Preț: 400.42 lei
Preț: 510.17 lei
Preț vechi: 600.20 lei
-15% Nou
Puncte Express: 765
Preț estimativ în valută:
97.67€ • 100.50$ • 82.33£
97.67€ • 100.50$ • 82.33£
Carte tipărită la comandă
Livrare economică 28 februarie-14 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461268543
ISBN-10: 1461268540
Pagini: 524
Ilustrații: XI, 504 p.
Dimensiuni: 155 x 235 x 32 mm
Greutate: 0.73 kg
Ediția:2nd ed. 1997. Softcover reprint of the original 2nd ed. 1997
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 1461268540
Pagini: 524
Ilustrații: XI, 504 p.
Dimensiuni: 155 x 235 x 32 mm
Greutate: 0.73 kg
Ediția:2nd ed. 1997. Softcover reprint of the original 2nd ed. 1997
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
I Sheaves and Presheaves.- Definitions.- 2 Homomorphisms, subsheaves, and quotient sheaves.- 3 Direct and inverse images.- 4 Cohomomorphisms.- 5 Algebraic constructions.- 6 Supports.- 7 Classical cohomology theories.- Exercises.- II Sheaf Cohomology.- 1 Differential sheaves and resolutions.- 2 The canonical resolution and sheaf cohomology.- 3 Injective sheaves.- 4 Acyclic sheaves.- 5 Flabby sheaves.- 6 Connected sequences of functors.- 7 Axioms for cohomology and the cup product.- 8 Maps of spaces.- 9 ?-soft and ?-fine sheaves.- 10 Subspaces.- 11 The Vietoris mapping theorem and homotopy invariance.- 12 Relative cohomology.- 13 Mayer-Vietoris theorems.- 14 Continuity.- 15 The Künneth and universal coefficient theorems.- 16 Dimension.- 17 Local connectivity.- 18 Change of supports; local cohomology groups.- 19 The transfer homomorphism and the Smith sequences.- 20 Steenrod’s cyclic reduced powers.- 21 The Steenrod operations.- Exercises.- III Comparison with Other Cohomology Theories.-1 Singular cohomology.- 2 Alexander-Spanier cohomology.- 3 de Rham cohomology.- 4 ?ech cohomology.- Exercises.- IV Applications of Spectral Sequences.- 1 The spectral sequence of a differential sheaf.- 2 The fundamental theorems of sheaves.- 3 Direct image relative to a support family.- 4 The Leray sheaf.- 5 Extension of a support family by a family on the base space.- 6 The Leray spectral sequence of a map.- 7 Fiber bundles.- 8 Dimension.- 9 The spectral sequences of Borel and Cartan.- 10 Characteristic classes.- 11 The spectral sequence of a filtered differential sheaf.- 12 The Fary spectral sequence.- 13 Sphere bundles with singularities.- 14 The Oliver transfer and the Conner conjecture.- Exercises.- V Borel-Moore Homology.- 1 Cosheaves.- 2 The dual of a differential cosheaf.- 3 Homology theory.- 4 Maps of spaces.- 5 Subspaces and relative homology.- 6 The Vietoris theorem, homotopy, and covering spaces.- 7 The homology sheaf of a map.- 8 The basic spectral sequences.- 9 Poincaré duality.- 10 The cap product.- 11 Intersection theory.- 12 Uniqueness theorems.- 31 Uniqueness theorems for maps and relative homology.- 14 The Künneth formula.- 15 Change of rings.- 16 Generalized manifolds.- 17 Locally homogeneous spaces.- 18 Homological fibrations and p-adic transformation groups.- 19 The transfer homomorphism in homology.- 20 Smith theory in homology.- Exercises.- VI Cosheaves and ?ech Homology.- 1 Theory of cosheaves.- 2 Local triviality.- 3 Local isomorphisms.- 4 Cech homology.- 5 The reflector.- 6 Spectral sequences.- 7 Coresolutions.- 8 Relative ?ech homology.- 9 Locally paracompact spaces.- 10 Borel-Moore homology.- 11 Modified Borel-Moore homology.- 12 Singular homology.- 13 Acyclic coverings.- 14 Applications to maps.- Exercises.- A Spectral Sequences.- 1 The spectral sequence of a filtered complex.- 2 Double complexes.- 3 Products.- 4 Homomorphisms.- B Solutions to Selected Exercises.- Solutions for Chapter I.- Solutions for Chapter II.- Solutions for Chapter III.- Solutions for Chapter IV.- Solutions for Chapter V.- Solutions for Chapter VI.- List of Symbols.- List of Selected Facts.