An Introduction to Applied Electromagnetics and Optics
Autor Vladimir V. Mitin, Dmitry I. Sementsoven Limba Engleză Hardback – 6 oct 2016
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 477.83 lei 6-8 săpt. | |
CRC Press – 10 dec 2019 | 477.83 lei 6-8 săpt. | |
Hardback (1) | 649.26 lei 6-8 săpt. | |
CRC Press – 6 oct 2016 | 649.26 lei 6-8 săpt. |
Preț: 649.26 lei
Preț vechi: 853.22 lei
-24% Nou
Puncte Express: 974
Preț estimativ în valută:
124.25€ • 128.19$ • 105.16£
124.25€ • 128.19$ • 105.16£
Carte tipărită la comandă
Livrare economică 05-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781498776295
ISBN-10: 1498776299
Pagini: 368
Ilustrații: 191
Dimensiuni: 178 x 254 x 26 mm
Greutate: 1.8 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
ISBN-10: 1498776299
Pagini: 368
Ilustrații: 191
Dimensiuni: 178 x 254 x 26 mm
Greutate: 1.8 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Cuprins
PART I: ELECTRIC AND MAGNETIC FIELDS IN ISOTROPIC MEDIA. CHAPTER 1. ELECTROSTATICS. Electric charges, electric charge conservation law, Coulomb’s law. Electric field vector, principle of superposition. Electric potential and electric field energy. Gauss’s law for the electric field. Relation between the electric field and the electric potential. Poisson’s and Laplace equations. Electric field in a medium, electric displacement. Problems. CHAPTER 2. MAGNETOSTATICS. Interaction of moving charges. The field of moving charges and currents, the Biot-Savart law. Ampere’s law. Magnetic field of a solenoid. Magnetic field in a medium, magnetic field intensity. Problems. CHAPTER 3. MAXWELL’S EQUATIONS FOR ELECTROMAGNETIC FIELDS. Faraday’s law. Self-inductance and mutual inductance. Magnetic field energy. Transient processes in circuits with capacitors and inductors. Displacement current. Maxwell’s equations. Problems. PART II: ELECTROMAGNETIC WAVES IN HOMOGENEOUS, HETEROGENEOUS AND ANISOTROPIC MEDIA. CHAPTER 4. ELECTROMAGNETIC WAVES IN HOMOGENEOUS MEDIA WITHOUT ABSORPTION. Electromagnetic wave spectrum. Wave equation. Plane monochromatic waves. olarization of electromagnetic waves. Superposition of electromagnetic waves. Energy and momentum of a wave. Standing waves. Interference and coherence of electromagnetic waves. Problems. CHAPTER 5. ELECTROMAGNETIC FIELDS AND WAVES AT THE INTERFACE BETWEEN TWO MEDIA. Boundary conditions and inverse boundary value problem in electromagnetism Boundary conditions for the electric field of an electromagnetic wave. Boundary conditions for the magnetic field of an electromagnetic wave. Laws of reflection and refraction of waves. Reflection and transmission coefficients of waves. Total internal reflection. Reflection of a wave from a dielectric layer. Problems. CHAPTER 6. ELECTROMAGNETIC WAVES IN ANISOTROPIC AND OPTICALLY ACTIVE MEDIA. The structure of plane wave in an anisotropic medium. Dispersion relation and normal waves. Waves in uniaxial crystals. The refractive index ellipsoid. Optically active media. Waves in chiral media. Problems. CHAPTER 7. ELECTROMAGNETIC WAVES IN CONDUCTING MEDIA. The dielectric permittivity and impedance of a metal. Skin effect. Wave incidence on a metal surface. Surface waves at the interface between a dielectric and a conductor. Superconductivity. Quantum effects in superconductivity. Problems. PART III: ELECTROMAGNETIC WAVES IN PERIODIC AND WAVEGUIDING STRUCTURES. CHAPTER 8. WAVES IN PERIODIC STRUCTURES. Diffraction phenomena. Diffraction by a slit. Diffraction by a one-dimensional lattice. Diffraction by a three-dimensional lattice. Waves in continuous periodic media. Waves in planar layered periodic structures. Photonic crystals. Problems. CHAPTER 9. WAVES IN GUIDING STRUCTURES. Types of guiding structures. Field structure over the conducting plane. Field between two parallel metal planes. Fields in a rectangular waveguide. The waveguide operating conditions. Attenuation of waves in waveguides. Reflections in transmission lines and need of their matching. Two-wire, coaxial, and strip-line transmission lines. Optical waveguides (lightguides). Problems. CHAPTER 10. EMISSION OF
Notă biografică
Vladimir V. Mitin is SUNY Distinguished Professor in the Department of Electrical Engineering and Adjunct Professor of Physics at the University at Buffalo, The State University of New York. He is a Fellow of IEEE, SPIE, APS, AAAS, and IoP and the author of five textbooks, four research monographs, and more than 260 research articles published in refereed journals.
Dmitry I. Sementsov is Professor of Physics at Ulyanovsk State University, Russia. He is the author of one textbook and more than 420 research papers published in peer-reviewed journals.
Dmitry I. Sementsov is Professor of Physics at Ulyanovsk State University, Russia. He is the author of one textbook and more than 420 research papers published in peer-reviewed journals.
Recenzii
"…provides a clear explanation and introduction to applied electromagnetics and optics. This very readable book begins with the foundations of the fields and then successfully covers a number of timely topics that have wide ranges of potential applications."
— Michael A. Stroscio, University of Illinois at Chicago, USA
"This book is well written, not overly mathematical, methodical, and combines a thorough coverage of fundamentals with up-to-date results, such as superconductors, surface waves, plasmas, photonic crystals, and negative refraction."
—Michael Shur, Rensselaer Polytechnic Institute, Troy, New York, USA
"The book’s contents give students not only fundamental knowledge about electrodynamics, but also practical ideas for applications to device, antenna, and waveguide implementations with truly physical and electrodynamical theories. Organizing the book this way gives strong benefits to all students in wide aspects of related fields like electrical engineering and applied physics, as well as material science courses students."
— Taiichi Otsuji, Tohoku University, Sendai, Japan
"This book is appropriate for both students as an excellent electromagnetics text and for engineers as a great reference. A rigorous mathematics presentation and thoughtful organization structure develop a step by step expertise from traditional solutions of Maxwell equations in isotropic medium, interfaces and transmission lines to advanced anisotropic, periodic and negative index materials. The book provides a unified approach to different EM and optical problems and illustrates them with many solved examples. The reader will require some knowledge of mathematics and general physics for clear understanding of the material, but as a result, will acquire confidence in understanding of this essential subject for modern engineering disciplines."
— Serge Oktyabrsky, SUNY Polytechnic Institute, Utica, New York, USA
"This book is comprehensive, methodical and not overly mathematical. The earlier versions of its manuscript were used in teaching a course in applied electromagnetics. Examples (and their solutions) on different topics at each chapter's end, complete with hints and answers, help readers to master the material. This book is appropriate for both a one-semester course for electrical engineers and as a reference book for applied physics and materials science graduate students."
—Optics & Photonics News, June 2017
"…provides a clear explanation and introduction to applied electromagnetics and optics. This very readable book begins with the foundations of the fields and then successfully covers a number of timely topics that have wide ranges of potential applications."
— Michael A. Stroscio, University of Illinois at Chicago, USA
"This book is well written, not overly mathematical, methodical, and combines a thorough coverage of fundamentals with up-to-date results, such as superconductors, surface waves, plasmas, photonic crystals, and negative refraction."
—Michael Shur, Rensselaer Polytechnic Institute, Troy, New York, USA
"The book’s contents give students not only fundamental knowledge about electrodynamics, but also practical ideas for applications to device, antenna, and waveguide implementations with truly physical and electrodynamical theories. Organizing the book this way gives strong benefits to all students in wide aspects of related fields like electrical engineering and applied physics, as well as material science courses students."
— Taiichi Otsuji, Tohoku University, Sendai, Japan
"This book is appropriate for both students as an excellent electromagnetics text and for engineers as a great reference. A rigorous mathematics presentation and thoughtful organization structure develop a step by step expertise from traditional solutions of Maxwell equations in isotropic medium, interfaces and transmission lines to advanced anisotropic, periodic and negative index materials. The book provides a unified approach to different EM and optical problems and illustrates them with many solved examples. The reader will require some knowledge of mathematics and general physics for clear understanding of the material, but as a result, will acquire confidence in understanding of this essential subject for modern engineering disciplines."
— Serge Oktyabrsky, SUNY Polytechnic Institute, Utica, New York, USA
"This book is very unique in view of the fact that it covers both fundamentals of Electromagnetics and its applications in Optics, as well as Electromagnetic waves in Various types of Media. The book covers materials that are not covered in typical Electromagnetics textbooks. For example, the electromagnetic wave interaction with anisotropic medium, optically active medium, periodic structures, gyrotropic medium, and amplifying medium are very well described at an intermediate level. These subjects, as well as other typical subjects like waveguides and antennas, will make the Electromagnetics course more interesting."
— Jay K. Lee, Syracuse University, New York, USA
"This book is comprehensive, methodical and not overly mathematical. The earlier versions of its manuscript were used in teaching a course in applied electromagnetics. Examples (and their solutions) on different topics at each chapter's end, complete with hints and answers, help readers to master the material. This book is appropriate for both a one-semester course for electrical engineers and as a reference book for applied physics and materials science graduate students."
—Optics & Photonics News, June 2017
— Michael A. Stroscio, University of Illinois at Chicago, USA
"This book is well written, not overly mathematical, methodical, and combines a thorough coverage of fundamentals with up-to-date results, such as superconductors, surface waves, plasmas, photonic crystals, and negative refraction."
—Michael Shur, Rensselaer Polytechnic Institute, Troy, New York, USA
"The book’s contents give students not only fundamental knowledge about electrodynamics, but also practical ideas for applications to device, antenna, and waveguide implementations with truly physical and electrodynamical theories. Organizing the book this way gives strong benefits to all students in wide aspects of related fields like electrical engineering and applied physics, as well as material science courses students."
— Taiichi Otsuji, Tohoku University, Sendai, Japan
"This book is appropriate for both students as an excellent electromagnetics text and for engineers as a great reference. A rigorous mathematics presentation and thoughtful organization structure develop a step by step expertise from traditional solutions of Maxwell equations in isotropic medium, interfaces and transmission lines to advanced anisotropic, periodic and negative index materials. The book provides a unified approach to different EM and optical problems and illustrates them with many solved examples. The reader will require some knowledge of mathematics and general physics for clear understanding of the material, but as a result, will acquire confidence in understanding of this essential subject for modern engineering disciplines."
— Serge Oktyabrsky, SUNY Polytechnic Institute, Utica, New York, USA
"This book is comprehensive, methodical and not overly mathematical. The earlier versions of its manuscript were used in teaching a course in applied electromagnetics. Examples (and their solutions) on different topics at each chapter's end, complete with hints and answers, help readers to master the material. This book is appropriate for both a one-semester course for electrical engineers and as a reference book for applied physics and materials science graduate students."
—Optics & Photonics News, June 2017
"…provides a clear explanation and introduction to applied electromagnetics and optics. This very readable book begins with the foundations of the fields and then successfully covers a number of timely topics that have wide ranges of potential applications."
— Michael A. Stroscio, University of Illinois at Chicago, USA
"This book is well written, not overly mathematical, methodical, and combines a thorough coverage of fundamentals with up-to-date results, such as superconductors, surface waves, plasmas, photonic crystals, and negative refraction."
—Michael Shur, Rensselaer Polytechnic Institute, Troy, New York, USA
"The book’s contents give students not only fundamental knowledge about electrodynamics, but also practical ideas for applications to device, antenna, and waveguide implementations with truly physical and electrodynamical theories. Organizing the book this way gives strong benefits to all students in wide aspects of related fields like electrical engineering and applied physics, as well as material science courses students."
— Taiichi Otsuji, Tohoku University, Sendai, Japan
"This book is appropriate for both students as an excellent electromagnetics text and for engineers as a great reference. A rigorous mathematics presentation and thoughtful organization structure develop a step by step expertise from traditional solutions of Maxwell equations in isotropic medium, interfaces and transmission lines to advanced anisotropic, periodic and negative index materials. The book provides a unified approach to different EM and optical problems and illustrates them with many solved examples. The reader will require some knowledge of mathematics and general physics for clear understanding of the material, but as a result, will acquire confidence in understanding of this essential subject for modern engineering disciplines."
— Serge Oktyabrsky, SUNY Polytechnic Institute, Utica, New York, USA
"This book is very unique in view of the fact that it covers both fundamentals of Electromagnetics and its applications in Optics, as well as Electromagnetic waves in Various types of Media. The book covers materials that are not covered in typical Electromagnetics textbooks. For example, the electromagnetic wave interaction with anisotropic medium, optically active medium, periodic structures, gyrotropic medium, and amplifying medium are very well described at an intermediate level. These subjects, as well as other typical subjects like waveguides and antennas, will make the Electromagnetics course more interesting."
— Jay K. Lee, Syracuse University, New York, USA
"This book is comprehensive, methodical and not overly mathematical. The earlier versions of its manuscript were used in teaching a course in applied electromagnetics. Examples (and their solutions) on different topics at each chapter's end, complete with hints and answers, help readers to master the material. This book is appropriate for both a one-semester course for electrical engineers and as a reference book for applied physics and materials science graduate students."
—Optics & Photonics News, June 2017
Descriere
Modern technology is rapidly developing and for this reason future engineers need to acquire advanced knowledge in science and technology, including electromagnetic phenomena. This book is a contemporary text of a one-semester course for junior electrical engineering students. It covers a broad spectrum of electromagnetic phenomena such as, surface waves, plasmas, photonic crystals, negative refraction as well as related materials including superconductors. In addition, the text brings together electromagnetism and optics as the majority of texts discuss electromagnetism disconnected from optics. In contrast, in this book both are discussed. Seven labs have been developed to accompany the material of the book.