An Introduction to Infinite-Dimensional Linear Systems Theory: Texts in Applied Mathematics, cartea 21
Autor Ruth F. Curtain, Hans Zwarten Limba Engleză Hardback – 23 iun 1995
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 592.33 lei 43-57 zile | |
Springer – mar 2013 | 592.33 lei 43-57 zile | |
Hardback (1) | 648.88 lei 43-57 zile | |
Springer – 23 iun 1995 | 648.88 lei 43-57 zile |
Din seria Texts in Applied Mathematics
- 17% Preț: 368.60 lei
- Preț: 484.90 lei
- 19% Preț: 510.59 lei
- 17% Preț: 498.73 lei
- Preț: 454.44 lei
- 17% Preț: 436.57 lei
- Preț: 447.92 lei
- 19% Preț: 586.75 lei
- Preț: 396.01 lei
- 17% Preț: 364.52 lei
- 15% Preț: 582.72 lei
- Preț: 482.29 lei
- 15% Preț: 594.56 lei
- Preț: 454.07 lei
- Preț: 398.08 lei
- 15% Preț: 523.81 lei
- 18% Preț: 1208.03 lei
- Preț: 396.01 lei
- 15% Preț: 501.38 lei
- Preț: 396.75 lei
- Preț: 391.27 lei
- Preț: 454.66 lei
- 15% Preț: 524.53 lei
- 15% Preț: 667.81 lei
- 15% Preț: 717.98 lei
- Preț: 386.95 lei
- 15% Preț: 642.80 lei
- Preț: 505.21 lei
Preț: 648.88 lei
Preț vechi: 763.39 lei
-15% Nou
Puncte Express: 973
Preț estimativ în valută:
124.18€ • 128.99$ • 103.15£
124.18€ • 128.99$ • 103.15£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387944753
ISBN-10: 0387944753
Pagini: 698
Ilustrații: XVIII, 698 p.
Dimensiuni: 155 x 235 x 42 mm
Greutate: 1.18 kg
Ediția:1995
Editura: Springer
Colecția Springer
Seria Texts in Applied Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 0387944753
Pagini: 698
Ilustrații: XVIII, 698 p.
Dimensiuni: 155 x 235 x 42 mm
Greutate: 1.18 kg
Ediția:1995
Editura: Springer
Colecția Springer
Seria Texts in Applied Mathematics
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
1 Introduction.- 1.1 Motivation.- 1.2 Systems theory concepts in finite dimensions.- 1.3 Aims of this book.- 2 Semigroup Theory.- 2.1 Strongly continuous semigroups.- 2.2 Contraction and dual semigroups.- 2.3 Riesz-spectral operators.- 2.4 Delay equations.- 2.5 Invariant subspaces.- 2.6 Exercises.- 2.7 Notes and references.- 3 The Cauchy Problem.- 3.1 The abstract Cauchy problem.- 3.2 Perturbations and composite systems.- 3.3 Boundary control systems.- 3.4 Exercises.- 3.5 Notes and references.- 4 Inputs and Outputs.- 4.1 Controllability and observability.- 4.2 Tests for approximate controllability and observability.- 4.3 Input-output maps.- 4.4 Exercises.- 4.5 Notes and references.- 5 Stability, Stabilizability, and Detectability.- 5.1 Exponential stability.- 5.2 Exponential stabilizability and detectability.- 5.3 Compensator design.- 5.4 Exercises.- 5.5 Notes and references.- 6 Linear Quadratic Optimal Control.- 6.1 The problem on a finite-time interval.- 6.2 The problem on the infinite-time interval.- 6.3 Exercises.- 6.4 Notes and references.- 7 Frequency-Domain Descriptions.- 7.1 The Callier-Desoer class of scalar transfer functions.- 7.2 The multivariable extension.- 7.3 State-space interpretations.- 7.4 Exercises.- 7.5 Notes and references.- 8 Hankel Operators and the Nehari Problem.- 8.1 Frequency-domain formulation.- 8.2 Hankel operators in the time domain.- 8.3The Nehari extension problem for state linear systems.- 8.4 Exercises.- 8.5 Notes and references.- 9 Robust Finite-Dimensional Controller Synthesis.- 9.1 Closed-loop stability and coprime factorizations.- 9.2 Robust stabilization of uncertain systems.- 9.3 Robust stabilization under additive uncertainty.- 9.4 Robust stabilization under normalized left-coprime-factor uncertainty.- 9.5 Robustness in the presence of small delays.- 9.6 Exercises.- 9.7 Notes and references.- A. Mathematical Background.- A.1 Complex analysis.- A.2 Normed linear spaces.- A.2.1 General theory.- A.2.2 Hilbert spaces.- A.3 Operators on normed linear spaces.- A.3.1 General theory.- A.3.2 Operators on Hilbert spaces.- A.4 Spectral theory.- A.4.1 General spectral theory.- A.4.2 Spectral theory for compact normal operators.- A.5 Integration and differentiation theory.- A.5.1 Integration theory.- A.5.2 Differentiation theory.- A.6 Frequency-domain spaces.- A.6.1 Laplace and Fourier transforms.- A.6.2 Frequency-domain spaces.- A.6.3 The Hardy spaces.- A.7 Algebraic concepts.- A.7.1 General definitions.- A.7.2 Coprime factorizations over principal ideal domains.- A.7.3 Coprime factorizations over commutative integral domains.- References.- Notation.