An Introduction to Metric Spaces
Autor Dhananjay Gopal, Aniruddha Deshmukh, Abhay S Ranadive, Shubham Yadaven Limba Engleză Hardback – 15 iul 2020
Some of the noteworthy features of this book include
· Diagrammatic illustrations that encourage readers to think geometrically
· Focus on systematic strategy to generate ideas for the proofs of theorems
· A wealth of remarks, observations along with a variety of exercises
· Historical notes and brief biographies appearing throughout the text
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 323.57 lei 43-57 zile | |
CRC Press – 15 iul 2022 | 323.57 lei 43-57 zile | |
Hardback (1) | 770.14 lei 43-57 zile | |
CRC Press – 15 iul 2020 | 770.14 lei 43-57 zile |
Preț: 770.14 lei
Preț vechi: 939.20 lei
-18% Nou
Puncte Express: 1155
Preț estimativ în valută:
147.39€ • 153.10$ • 122.43£
147.39€ • 153.10$ • 122.43£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780367493486
ISBN-10: 0367493489
Pagini: 302
Ilustrații: 50 Illustrations, black and white
Dimensiuni: 156 x 234 x 18 mm
Greutate: 0.56 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Locul publicării:Boca Raton, United States
ISBN-10: 0367493489
Pagini: 302
Ilustrații: 50 Illustrations, black and white
Dimensiuni: 156 x 234 x 18 mm
Greutate: 0.56 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Locul publicării:Boca Raton, United States
Public țintă
Postgraduate, Undergraduate Advanced, and Undergraduate CoreCuprins
ContentsPreface ix
A Note to the Reader xiii
Authors xv
1 Set Theory 1
1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 The empty set . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Operations on sets . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Uniqueness of the empty set . . . . . . . . . . . . . . . 9
1.1.4 Power sets . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.5 Cartesian products . . . . . . . . . . . . . . . . . . . . 9
1.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Types of relations . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Equivalence relations . . . . . . . . . . . . . . . . . . . 13
1.2.3 Partition of sets . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Partial order relations . . . . . . . . . . . . . . . . . . 16
1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.1 Composition of functions . . . . . . . . . . . . . . . . 24
1.3.2 Inverse of a function . . . . . . . . . . . . . . . . . . . 26
1.3.3 Images of sets under functions . . . . . . . . . . . . . 32
1.3.4 Inverse images of sets under functions . . . . . . . . . 36
1.4 Countability of Sets . . . . . . . . . . . . . . . . . . . . . . . 39
1.4.1 Finite sets . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.4.2 Countable sets . . . . . . . . . . . . . . . . . . . . . . 44
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2 Metric Spaces 55
2.1 Review of Real Number System and Absolute Value . . . . . 55
2.2 Young, H¨older, andMinkowski Inequalities . . . . . . . . . . 57
2.3 Notion ofMetric Space . . . . . . . . . . . . . . . . . . . . . 64
2.4 Open Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.4.1 Subspace topology . . . . . . . . . . . . . . . . . . . . 96
2.4.2 Product topology . . . . . . . . . . . . . . . . . . . . . 97
2.5 Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.6 Interior, Exterior, and Boundary Points . . . . . . . . . . . . 101
2.7 Limit and Cluster Points . . . . . . . . . . . . . . . . . . . . 104
2.8 Bounded Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.9 Distance Between Sets . . . . . . . . . . . . . . . . . . . . . 112
2.10 EquivalentMetrics . . . . . . . . . . . . . . . . . . . . . . . . 115
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3 Complete Metric Spaces 129
3.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.1.1 Subsequences . . . . . . . . . . . . . . . . . . . . . . . 130
3.2 Convergence of Sequence . . . . . . . . . . . . . . . . . . . . 131
3.3 CompleteMetric Spaces . . . . . . . . . . . . . . . . . . . . . 139
3.4 Completion ofMetric Spaces . . . . . . . . . . . . . . . . . . 143
3.4.1 Construction of the set Z . . . . . . . . . . . . . . . . 145
3.4.2 Embedding X in Z . . . . . . . . . . . . . . . . . . . . 147
3.4.3 Proving Z is complete . . . . . . . . . . . . . . . . . . 147
3.4.4 Uniqueness of extension up to isometry . . . . . . . . 148
3.5 Baire Category Theorem . . . . . . . . . . . . . . . . . . . . 149
3.5.1 Category of sets . . . . . . . . . . . . . . . . . . . . . 149
3.5.2 Baire category theorem . . . . . . . . . . . . . . . . . 151
3.5.3 Applications of Baire category theorem . . . . . . . . 153
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4 Compact Metric Spaces 161
4.1 Open Cover and Compact Sets . . . . . . . . . . . . . . . . . 161
4.2 General Properties of Compact Sets . . . . . . . . . . . . . . 165
4.3 Sufficient Conditions for Compactness . . . . . . . . . . . . . 169
4.4 Sequential Compactness . . . . . . . . . . . . . . . . . . . . . 172
4.5 Compactness: Characterizations . . . . . . . . . . . . . . . . 174
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5 Connected Spaces 183
5.1 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.1.1 Connected subsets . . . . . . . . . . . . . . . . . . . . 185
5.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.3 Totally Disconnected Spaces . . . . . . . . . . . . . . . . . . 192
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6 Continuity 195
6.1 Continuity of Real Valued Functions . . . . . . . . . . . . . . 195
6.2 Continuous Functions in ArbitraryMetric Spaces . . . . . . 197
6.2.1 Equivalent definitions of continuity and other
characterizations . . . . . . . . . . . . . . . . . . . . . 202
6.2.2 Results on continuity . . . . . . . . . . . . . . . . . . . 210
6.3 Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . 217
6.4 Continuous Functions on Compact Spaces . . . . . . . . . . . 224
6.5 Continuous Functions on Connected Spaces . . . . . . . . . . 229
6.5.1 Path connectedness . . . . . . . . . . . . . . . . . . . . 237
6.6 Equicontinuity and Arzela-Ascoli’s Theorem . . . . . . . . . 242
6.7 Open and ClosedMaps . . . . . . . . . . . . . . . . . . . . . 245
6.8 Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 246
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7 Banach Fixed Point Theorem and Its Applications 255
7.1 Banach Contraction Theorem . . . . . . . . . . . . . . . . . 255
7.2 Applications of Banach Contraction Principle . . . . . . . . . 260
7.2.1 Root finding problem . . . . . . . . . . . . . . . . . . 260
7.2.2 Solution of systemof linear algebraic equations . . . . 261
7.2.3 Picard existence theorem for differential equations . . 264
7.2.4 Solutions of integral equations . . . . . . . . . . . . . 267
7.2.5 Solutions of initial value and boundary value
problems . . . . . . . . . . . . . . . . . . . . . . . . . 271
7.2.6 Implicit function theorem . . . . . . . . . . . . . . . . 273
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Appendix A 277
Bibliography 281
Index 283
A Note to the Reader xiii
Authors xv
1 Set Theory 1
1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 The empty set . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Operations on sets . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Uniqueness of the empty set . . . . . . . . . . . . . . . 9
1.1.4 Power sets . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.5 Cartesian products . . . . . . . . . . . . . . . . . . . . 9
1.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Types of relations . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Equivalence relations . . . . . . . . . . . . . . . . . . . 13
1.2.3 Partition of sets . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Partial order relations . . . . . . . . . . . . . . . . . . 16
1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.1 Composition of functions . . . . . . . . . . . . . . . . 24
1.3.2 Inverse of a function . . . . . . . . . . . . . . . . . . . 26
1.3.3 Images of sets under functions . . . . . . . . . . . . . 32
1.3.4 Inverse images of sets under functions . . . . . . . . . 36
1.4 Countability of Sets . . . . . . . . . . . . . . . . . . . . . . . 39
1.4.1 Finite sets . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.4.2 Countable sets . . . . . . . . . . . . . . . . . . . . . . 44
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2 Metric Spaces 55
2.1 Review of Real Number System and Absolute Value . . . . . 55
2.2 Young, H¨older, andMinkowski Inequalities . . . . . . . . . . 57
2.3 Notion ofMetric Space . . . . . . . . . . . . . . . . . . . . . 64
2.4 Open Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.4.1 Subspace topology . . . . . . . . . . . . . . . . . . . . 96
2.4.2 Product topology . . . . . . . . . . . . . . . . . . . . . 97
2.5 Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.6 Interior, Exterior, and Boundary Points . . . . . . . . . . . . 101
2.7 Limit and Cluster Points . . . . . . . . . . . . . . . . . . . . 104
2.8 Bounded Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.9 Distance Between Sets . . . . . . . . . . . . . . . . . . . . . 112
2.10 EquivalentMetrics . . . . . . . . . . . . . . . . . . . . . . . . 115
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3 Complete Metric Spaces 129
3.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.1.1 Subsequences . . . . . . . . . . . . . . . . . . . . . . . 130
3.2 Convergence of Sequence . . . . . . . . . . . . . . . . . . . . 131
3.3 CompleteMetric Spaces . . . . . . . . . . . . . . . . . . . . . 139
3.4 Completion ofMetric Spaces . . . . . . . . . . . . . . . . . . 143
3.4.1 Construction of the set Z . . . . . . . . . . . . . . . . 145
3.4.2 Embedding X in Z . . . . . . . . . . . . . . . . . . . . 147
3.4.3 Proving Z is complete . . . . . . . . . . . . . . . . . . 147
3.4.4 Uniqueness of extension up to isometry . . . . . . . . 148
3.5 Baire Category Theorem . . . . . . . . . . . . . . . . . . . . 149
3.5.1 Category of sets . . . . . . . . . . . . . . . . . . . . . 149
3.5.2 Baire category theorem . . . . . . . . . . . . . . . . . 151
3.5.3 Applications of Baire category theorem . . . . . . . . 153
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4 Compact Metric Spaces 161
4.1 Open Cover and Compact Sets . . . . . . . . . . . . . . . . . 161
4.2 General Properties of Compact Sets . . . . . . . . . . . . . . 165
4.3 Sufficient Conditions for Compactness . . . . . . . . . . . . . 169
4.4 Sequential Compactness . . . . . . . . . . . . . . . . . . . . . 172
4.5 Compactness: Characterizations . . . . . . . . . . . . . . . . 174
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5 Connected Spaces 183
5.1 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.1.1 Connected subsets . . . . . . . . . . . . . . . . . . . . 185
5.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.3 Totally Disconnected Spaces . . . . . . . . . . . . . . . . . . 192
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6 Continuity 195
6.1 Continuity of Real Valued Functions . . . . . . . . . . . . . . 195
6.2 Continuous Functions in ArbitraryMetric Spaces . . . . . . 197
6.2.1 Equivalent definitions of continuity and other
characterizations . . . . . . . . . . . . . . . . . . . . . 202
6.2.2 Results on continuity . . . . . . . . . . . . . . . . . . . 210
6.3 Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . 217
6.4 Continuous Functions on Compact Spaces . . . . . . . . . . . 224
6.5 Continuous Functions on Connected Spaces . . . . . . . . . . 229
6.5.1 Path connectedness . . . . . . . . . . . . . . . . . . . . 237
6.6 Equicontinuity and Arzela-Ascoli’s Theorem . . . . . . . . . 242
6.7 Open and ClosedMaps . . . . . . . . . . . . . . . . . . . . . 245
6.8 Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 246
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7 Banach Fixed Point Theorem and Its Applications 255
7.1 Banach Contraction Theorem . . . . . . . . . . . . . . . . . 255
7.2 Applications of Banach Contraction Principle . . . . . . . . . 260
7.2.1 Root finding problem . . . . . . . . . . . . . . . . . . 260
7.2.2 Solution of systemof linear algebraic equations . . . . 261
7.2.3 Picard existence theorem for differential equations . . 264
7.2.4 Solutions of integral equations . . . . . . . . . . . . . 267
7.2.5 Solutions of initial value and boundary value
problems . . . . . . . . . . . . . . . . . . . . . . . . . 271
7.2.6 Implicit function theorem . . . . . . . . . . . . . . . . 273
Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Appendix A 277
Bibliography 281
Index 283
Notă biografică
Dr. Dhananjay Gopal has a doctorate in Mathematics from Guru Ghasidas University, Bilaspur, India, and is currently Assistant Professor of Applied Mathematics in S V National Institute of Technology, Surat, Gujarat, India. He is author and co-author of several papers in journals, proceedings, and a monograph on Background and Recent Developments of Metric Fixed Point Theory. He is devoted to general research on the theory of Nonlinear Analysis and Fuzzy Metric Fixed Point Theory.
Mr. Aniruddha Deshmukh is currently a research scholar in the area of Harmonic Analysis and k-plane transform Group from Indian Institute of Technology, Indore, India of (Integrated) MSc Mathematics and is associated to the Applied Mathematics and Humanities Department, S V National Institute of Technology, Surat, Gujarat, India. He has been an active student in the department and has initiated many activities for the benefit of the students, especially as a member of the science community (student chapter), known by the name of SCOSH. During his course, he has also attended various internships and workshop such as the Mathematics Training and Talent Search (MTTS) Programme for two consecutive years (2017–2018) and has also done a project on the qualitative questions on Differential Equations at Indian Institute of Technology (IIT), Gandhinagar, Gujarat, India in 2019. He has also qualified CSIR-NET JRF. Furthermore, his research interest focuses on Linear Algebra and Analysis and their applicability in solving some real-world problems.
Abhay S. Ranadive is a Professor at the Department of Pure & Applied Mathematics Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chattisgarh, India. He has been teaching at the university for the last 30 years. He is author and co-author of several papers in journals and proceedings. He is devoted to general research on the theory of fuzzy sets and fuzzy logic, modules, and metric fixed point.
Mr. Shubham Yadav is a research scholar in the area of Geometry and Topology from Harish-Chandra Research Institute (HRI) Prayagraj (Allahabad), Uttar Pradesh, India and is associated to the Applied Mathematics and Humanities Department, S V National Institute of Technology, Surat, Gujarat, India. As a member of SCOSH the student prominent science community in the institute, he has attended and organized various workshops and seminars. He also attended Madhava Mathematics Camp 2017. He did an internship on the calculus of fuzzy numbers at NIT, Trichy and one on operator theory at IIT, Hyderabad. He has also qualified for JRF. His main research interests are functional analysis and fuzzy sets with a knack for learning abstract mathematical concepts.
Mr. Aniruddha Deshmukh is currently a research scholar in the area of Harmonic Analysis and k-plane transform Group from Indian Institute of Technology, Indore, India of (Integrated) MSc Mathematics and is associated to the Applied Mathematics and Humanities Department, S V National Institute of Technology, Surat, Gujarat, India. He has been an active student in the department and has initiated many activities for the benefit of the students, especially as a member of the science community (student chapter), known by the name of SCOSH. During his course, he has also attended various internships and workshop such as the Mathematics Training and Talent Search (MTTS) Programme for two consecutive years (2017–2018) and has also done a project on the qualitative questions on Differential Equations at Indian Institute of Technology (IIT), Gandhinagar, Gujarat, India in 2019. He has also qualified CSIR-NET JRF. Furthermore, his research interest focuses on Linear Algebra and Analysis and their applicability in solving some real-world problems.
Abhay S. Ranadive is a Professor at the Department of Pure & Applied Mathematics Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chattisgarh, India. He has been teaching at the university for the last 30 years. He is author and co-author of several papers in journals and proceedings. He is devoted to general research on the theory of fuzzy sets and fuzzy logic, modules, and metric fixed point.
Mr. Shubham Yadav is a research scholar in the area of Geometry and Topology from Harish-Chandra Research Institute (HRI) Prayagraj (Allahabad), Uttar Pradesh, India and is associated to the Applied Mathematics and Humanities Department, S V National Institute of Technology, Surat, Gujarat, India. As a member of SCOSH the student prominent science community in the institute, he has attended and organized various workshops and seminars. He also attended Madhava Mathematics Camp 2017. He did an internship on the calculus of fuzzy numbers at NIT, Trichy and one on operator theory at IIT, Hyderabad. He has also qualified for JRF. His main research interests are functional analysis and fuzzy sets with a knack for learning abstract mathematical concepts.
Descriere
This book is designed to provide an extensive understanding of Metric spaces. It presents the basics of metric spaces in a natural way which encourages geometric thinking.