Cantitate/Preț
Produs

An Introduction to Probabilistic Modeling: Undergraduate Texts in Mathematics

Autor Pierre Bremaud
en Limba Engleză Hardback – aug 1988
Introduction to the basic concepts of probability theory: independence, expectation, convergence in law and almost-sure convergence. Short expositions of more advanced topics such as Markov Chains, Stochastic Processes, Bayesian Decision Theory and Information Theory.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 50904 lei  6-8 săpt.
  Springer – 17 oct 2012 50904 lei  6-8 săpt.
Hardback (1) 51442 lei  6-8 săpt.
  Springer – aug 1988 51442 lei  6-8 săpt.

Din seria Undergraduate Texts in Mathematics

Preț: 51442 lei

Preț vechi: 60520 lei
-15% Nou

Puncte Express: 772

Preț estimativ în valută:
9844 10354$ 8225£

Carte tipărită la comandă

Livrare economică 09-23 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387964607
ISBN-10: 0387964606
Pagini: 208
Ilustrații: XVI, 208 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.48 kg
Ediția:1988
Editura: Springer
Colecția Springer
Seria Undergraduate Texts in Mathematics

Locul publicării:New York, NY, United States

Public țintă

Professional/practitioner

Cuprins

1 Basic Concepts and Elementary Models.- 1. The Vocabulary of Probability Theory.- 2. Events and Probability.- 3. Random Variables and Their Distributions.- 4. Conditional Probability and Independence.- 5. Solving Elementary Problems.- 6. Counting and Probability.- 7. Concrete Probability Spaces.- Illustration 1. A Simple Model in Genetics: Mendel’s Law and Hardy—Weinberg’s Theorem.- Illustration 2. The Art of Counting: The Ballot Problem and the Reflection Principle.- Illustration 3. Bertrand’s Paradox.- 2 Discrete Probability.- 1. Discrete Random Elements.- 2. Variance and Chebyshev’s Inequality.- 3. Generating Functions.- Illustration 4. An Introduction to Population Theory: Galton—Watson’s Branching Process.- Illustration 5. Shannon’s Source Coding Theorem: An Introduction to Information Theory.- 3 Probability Densities.- I. Expectation of Random Variables with a Density.- 2. Expectation of Functionals of Random Vectors.- 3. Independence.- 4. Random Variables That Are Not Discrete and Do Not Have a pd.- Illustration 6. Buffon’s Needle: A Problem in Random Geometry.- 4 Gauss and Poisson.- 1. Smooth Change of Variables.- 2. Gaussian Vectors.- 3. Poisson Processes.- 4. Gaussian Stochastic Processes.- Illustration 7. An Introduction to Bayesian Decision Theory: Tests of Gaussian Hypotheses.- 5 Convergences.- 1. Almost-Sure Convergence.- 2. Convergence in Law.- 3. The Hierarchy of Convergences.- Illustration 8. A Statistical Procedure: The Chi-Square Test.- Illustration 9. Introduction to Signal Theory: Filtering.- Additional Exercises.- Solutions to Additional Exercises.