Cantitate/Preț
Produs

An Invitation to Model Theory

Autor Jonathan Kirby
en Limba Engleză Hardback – 17 apr 2019
Model theory begins with an audacious idea: to consider statements about mathematical structures as mathematical objects of study in their own right. While inherently important as a tool of mathematical logic, it also enjoys connections to and applications in diverse branches of mathematics, including algebra, number theory and analysis. Despite this, traditional introductions to model theory assume a graduate-level background of the reader. In this innovative textbook, Jonathan Kirby brings model theory to an undergraduate audience. The highlights of basic model theory are illustrated through examples from specific structures familiar from undergraduate mathematics, paying particular attention to definable sets throughout. With numerous exercises of varying difficulty, this is an accessible introduction to model theory and its place in mathematics.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 19122 lei  3-5 săpt. +1044 lei  5-11 zile
  Cambridge University Press – 17 apr 2019 19122 lei  3-5 săpt. +1044 lei  5-11 zile
Hardback (1) 41345 lei  6-8 săpt.
  Cambridge University Press – 17 apr 2019 41345 lei  6-8 săpt.

Preț: 41345 lei

Preț vechi: 46455 lei
-11% Nou

Puncte Express: 620

Preț estimativ în valută:
7918 8305$ 6568£

Carte tipărită la comandă

Livrare economică 27 ianuarie-10 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781107163881
ISBN-10: 1107163889
Pagini: 194
Ilustrații: 5 b/w illus.
Dimensiuni: 156 x 234 x 15 mm
Greutate: 0.41 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States

Cuprins

Preface; Part I. Languages and Structures: 1. Structures; 2. Terms; 3. Formulas; 4. Definable sets; 5. Substructures and quantifiers; Part II. Theories and Compactness: 6. Theories and axioms; 7. The complex and real fields; 8. Compactness and new constants; 9. Axiomatisable classes; 10. Cardinality considerations; 11. Constructing models from syntax; Part III. Changing Models: 12. Elementary substructures; 13. Elementary extensions; 14. Vector spaces and categoricity; 15. Linear orders; 16. The successor structure; Part IV. Characterising Definable Sets: 17. Quantifier elimination for DLO; 18. Substructure completeness; 19. Power sets and Boolean algebras; 20. The algebras of definable sets; 21. Real vector spaces and parameters; 22. Semi-algebraic sets; Part V. Types: 23. Realising types; 24. Omitting types; 25. Countable categoricity; 26. Large and small countable models; 27. Saturated models; Part VI. Algebraically Closed Fields: 28. Fields and their extensions; 29. Algebraic closures of fields; 30. Categoricity and completeness; 31. Definable sets and varieties; 32. Hilbert's Nullstellensatz; Bibliography; Index.

Notă biografică


Descriere

An innovative and largely self-contained textbook bringing model theory to an undergraduate audience.