Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data: Studies in Classification, Data Analysis, and Knowledge Organization
Editat de Hans-Hermann Bock, Edwin Didayen Limba Engleză Paperback – 21 dec 1999
Din seria Studies in Classification, Data Analysis, and Knowledge Organization
- 20% Preț: 1203.30 lei
- 20% Preț: 587.28 lei
- Preț: 386.63 lei
- 18% Preț: 879.72 lei
- 15% Preț: 649.62 lei
- 18% Preț: 966.50 lei
- 18% Preț: 1009.76 lei
- Preț: 414.34 lei
- 15% Preț: 640.40 lei
- 18% Preț: 1104.87 lei
- 15% Preț: 655.18 lei
- 20% Preț: 583.37 lei
- 15% Preț: 632.91 lei
- Preț: 403.06 lei
- 20% Preț: 990.03 lei
- 18% Preț: 951.01 lei
- 18% Preț: 947.42 lei
- 18% Preț: 778.35 lei
- 20% Preț: 992.16 lei
- 18% Preț: 1381.24 lei
- 15% Preț: 652.42 lei
- 18% Preț: 956.98 lei
- 18% Preț: 955.26 lei
- 20% Preț: 1005.59 lei
- 15% Preț: 644.94 lei
- 15% Preț: 648.02 lei
- 15% Preț: 642.97 lei
- 20% Preț: 585.29 lei
- 24% Preț: 795.77 lei
- 20% Preț: 1453.84 lei
- 20% Preț: 559.43 lei
- 15% Preț: 642.83 lei
- 15% Preț: 645.25 lei
- Preț: 395.23 lei
- 20% Preț: 572.08 lei
- 15% Preț: 634.88 lei
- 15% Preț: 678.36 lei
- 15% Preț: 689.89 lei
- Preț: 420.25 lei
- 18% Preț: 938.33 lei
- 15% Preț: 647.84 lei
- Preț: 388.52 lei
- 20% Preț: 561.11 lei
- 20% Preț: 995.25 lei
- 15% Preț: 635.67 lei
- 20% Preț: 989.53 lei
- 20% Preț: 1000.04 lei
- 15% Preț: 641.36 lei
- 15% Preț: 647.84 lei
Preț: 642.97 lei
Preț vechi: 756.43 lei
-15% Nou
Puncte Express: 964
Preț estimativ în valută:
123.14€ • 126.87$ • 103.15£
123.14€ • 126.87$ • 103.15£
Carte tipărită la comandă
Livrare economică 22 februarie-08 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540666196
ISBN-10: 3540666192
Pagini: 448
Ilustrații: XVIII, 425 p.
Dimensiuni: 170 x 242 x 24 mm
Greutate: 0.62 kg
Ediția:2000
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Classification, Data Analysis, and Knowledge Organization
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540666192
Pagini: 448
Ilustrații: XVIII, 425 p.
Dimensiuni: 170 x 242 x 24 mm
Greutate: 0.62 kg
Ediția:2000
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Classification, Data Analysis, and Knowledge Organization
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Symbolic Data Analysis and the SODAS Project: Purpose, History, Perspective.- 1.1 Introduction.- 1.2 Symbolic Data Tables and Symbolic Objects.- 1.3 Tools and Operations for Symbolic Objects.- 1.4 History and Evolution of SDA.- 1.5 The Content of the SODAS Project.- 1.6 Philosophical Background: Concepts and Symbolic Objects.- 1.7 Advantages of Using Symbolic Data Analysis.- 1.8 The Future Development of SODAS.- 2 The Classical Data Situation.- 2.1 Introduction.- 2.2 Variables as Input Data.- 2.3 Quantitative Variables.- 2.4 Qualitative Variables.- 2.5 Data Vectors and the Data Matrix.- 2.6 Dependent Variables.- 2.7 Missing Values.- 3 Symbolic Data.- 3.1 Three Introductory Examples.- 3.2 Multi-Valued and Interval Variables.- 3.3 Modal Variables.- 3.4 A Synthesis of Symbolic Data Types.- 3.5 The Symbolic Data Array.- 4 Symbolic Objects.- 4.1 Introduction and Examples.- 4.2 Relations and Descriptions.- 4.3 Events and Assertion Objects.- 4.4 Boolean Symbolic Objects as Triples.- 4.5 Modal Symbolic Objects.- 5 Generation of Symbolic Objects from Relational Databases.- 5.1 Introduction to Relational Databases.- 5.2 Principles of Symbolic Object Acquisition from Relational Databases.- 5.3 Interaction with the Database.- 5.4 A Generalization Operator.- 5.5 Further Operations on Generated Assertions.- 6 Descriptive Statistics for Symbolic Data.- 6.1 Descriptive Statistics for a Classical Numerical Variable.- 6.2 The Observed Symbolic Data Set.- 6.3 The Case of Multi-Valued Variables.- 6.4 The Case of an Interval-Valued Variable.- 7 Visualizing and Editing Symbolic Objects.- 7.1 The Zoom Star Representation.- 7.2 Editing Symbolic Objects.- 8 Similarity and Dissimilarity.- 8.1 Classical Resemblance Measures.- 8.2 Dissimilarity Measures for Probability Distributions.- 8.3 Dissimilarity Measures for Symbolic Objects.- 8.4 Matching Symbolic Objects.- 9 Symbolic Factor Analysis.- 9.1 Classical Principal Component Analysis.- 9.2 Symbolic Principal Component Analysis.- 9.3 Factorial Discriminant Analysis on Symbolic Objects.- 10 Discrimination: Assigning Symbolic Objects to Classes.- 10.1 Classical Methods of Discrimination.- 10.2 Symbolic Kernel Discriminant Analysis.- 10.3 Symbolic Discrimination Rules.- 10.4 Segmentation Trees for Stratified Data.- 11 Clustering Methods for Symbolic Objects.- 11.1 Clustering Problem, Clustering Methods for Classical Data.- 11.2 Criterion-Based Divisive Clustering for Symbolic Data.- 11.3 Hierarchical and Pyramidal Clustering with Complete Symbolic Objects.- 11.4 Pyramidal Classification for Interval Data Using Galois Lattice Reduction.- 12 Symbolic Approaches for Three-way Data.- 12.1 Introduction.- 12.2 The Input and Output Data.- 12.3 Processing Temporal Data.- 12.4 Interpretation of Outcomes from Processing of Temporal Changes.- 12.5 Real-Case Examples.- 13 Illustrative Benchmark Analyses.- 13.1. Introduction.- 13.2 Professional Careers of Retired Working Persons.- 13.3 Comparing European Labour Force Survey Results from the Basque Country and Portugal.- 13.4 Processing Census Data from ONS.- 13.5 General Conclusion.- 14 The SODAS Software Package.- 14.1 Short Introduction to the SODAS Software.- 14.2 Short Processing of a Chaining.- 14.3 Short List of Methods in SODAS Software.- Notations and Abbreviations.- Addresses of Contributors to this Volume.