Cantitate/Preț
Produs

Clustering Methodology for Symbolic Data: Wiley Series in Computational Statistics

Autor LB Billard
en Limba Engleză Hardback – 24 oct 2019
Covers everything readers need to know about clustering methodology for symbolic data--including new methods and headings--while providing a focus on multi-valued list data, interval data and histogram data This book presents all of the latest developments in the field of clustering methodology for symbolic data--paying special attention to the classification methodology for multi-valued list, interval-valued and histogram-valued data methodology, along with numerous worked examples. The book also offers an expansive discussion of data management techniques showing how to manage the large complex dataset into more manageable datasets ready for analyses. Filled with examples, tables, figures, and case studies, Clustering Methodology for Symbolic Data begins by offering chapters on data management, distance measures, general clustering techniques, partitioning, divisive clustering, and agglomerative and pyramid clustering. * Provides new classification methodologies for histogram valued data reaching across many fields in data science * Demonstrates how to manage a large complex dataset into manageable datasets ready for analysis * Features very large contemporary datasets such as multi-valued list data, interval-valued data, and histogram-valued data * Considers classification models by dynamical clustering * Features a supporting website hosting relevant data sets Clustering Methodology for Symbolic Data will appeal to practitioners of symbolic data analysis, such as statisticians and economists within the public sectors. It will also be of interest to postgraduate students of, and researchers within, web mining, text mining and bioengineering.
Citește tot Restrânge

Din seria Wiley Series in Computational Statistics

Preț: 55523 lei

Preț vechi: 60351 lei
-8% Nou

Puncte Express: 833

Preț estimativ în valută:
10627 11053$ 8905£

Carte tipărită la comandă

Livrare economică 13-27 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780470713938
ISBN-10: 0470713933
Pagini: 352
Dimensiuni: 150 x 241 x 21 mm
Greutate: 0.61 kg
Editura: Wiley
Seria Wiley Series in Computational Statistics

Locul publicării:Chichester, United Kingdom

Public țintă

Postgraduate students of, and researchers within, web mining, text mining and bio–engineering, Practitioners of symbolic data analysis–ie, statisticians and economists within the public (e.g. national statistics institutes) and private (eg banks, insurance companies, companies managing databases) sectors.

Cuprins


Notă biografică

LYNNE BILLARD, PHD, is University Professor in the Department of Statistics at the University of Georgia, USA. She has over two hundred and twenty-five publications mostly in leading journals, and co-edited six books. Professor Billard is a former president of ASA, IBS, and ENAR. EDWIN DIDAY, PHD, is the Professor of Computer Science at Centre De Recherche en Mathematiques de la Decision, CEREMADE, Université Paris-Dauphine, Université PSL, Paris, France. He has published fifty-eight papers and authored or edited fourteen books. Professor Diday is also the founder of the Symbolic Data Analysis field.

Descriere

Symbolic data analysis is a relatively new field that provides a range of methods for analyzing complex datasets. Standard statistical methods do not have the power or flexibility to make sense of very large datasets, and symbolic data analysis techniques have been developed in order to extract knowledge from such a data.