Cantitate/Preț
Produs

Analytic Functions: Princeton Legacy Library

Autor Lars Valerian Ahlfors
en Limba Engleză Paperback – 11 feb 2016
A survey of recent developments both in the classical and modern fields of the theory. Contents include: The complex analytic structure of the space of closed Riemann surfaces; Complex analysis on noncompact Riemann domains; Proof of the Teichmuller-Ahlfors theorem; The conformal mapping of Riemann surfaces; On certain coefficients of univalent functions; Compact analytic surfaces; On differentiable mappings; Deformations of complex analytic manifolds. Originally published in 1960. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 30009 lei  6-8 săpt.
  Princeton University Press – 11 feb 2016 30009 lei  6-8 săpt.
Hardback (1) 66193 lei  6-8 săpt.
  Princeton University Press – 18 apr 2016 66193 lei  6-8 săpt.

Din seria Princeton Legacy Library

Preț: 30009 lei

Nou

Puncte Express: 450

Preț estimativ în valută:
5745 5972$ 4763£

Carte tipărită la comandă

Livrare economică 07-21 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780691626116
ISBN-10: 0691626111
Pagini: 206
Dimensiuni: 163 x 224 x 12 mm
Greutate: 0.3 kg
Editura: Princeton University Press
Seria Princeton Legacy Library


Descriere

Descriere de la o altă ediție sau format:
A survey of recent developments both in the classical and modern fields of the theory. Contents include: The complex analytic structure of the space of closed Riemann surfaces; Complex analysis on noncompact Riemann domains; Proof of the Teichmuller-Ahlfors theorem; The conformal mapping of Riemann surfaces; On certain coefficients of univalent fun