Analyzing Time Interval Data: Introducing an Information System for Time Interval Data Analysis
Autor Philipp Meisenen Limba Engleză Hardback – 26 sep 2016
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 328.92 lei 6-8 săpt. | |
Springer Fachmedien Wiesbaden – 16 iun 2018 | 328.92 lei 6-8 săpt. | |
Hardback (1) | 338.35 lei 6-8 săpt. | |
Springer Fachmedien Wiesbaden – 26 sep 2016 | 338.35 lei 6-8 săpt. |
Preț: 338.35 lei
Preț vechi: 422.94 lei
-20% Nou
Puncte Express: 508
Preț estimativ în valută:
64.76€ • 66.74$ • 54.67£
64.76€ • 66.74$ • 54.67£
Carte tipărită la comandă
Livrare economică 03-17 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783658157272
ISBN-10: 3658157275
Pagini: 264
Ilustrații: XXXI, 232 p. 65 illus., 8 illus. in color.
Dimensiuni: 148 x 210 x 22 mm
Greutate: 0.58 kg
Ediția:1st ed. 2016
Editura: Springer Fachmedien Wiesbaden
Colecția Springer Vieweg
Locul publicării:Wiesbaden, Germany
ISBN-10: 3658157275
Pagini: 264
Ilustrații: XXXI, 232 p. 65 illus., 8 illus. in color.
Dimensiuni: 148 x 210 x 22 mm
Greutate: 0.58 kg
Ediția:1st ed. 2016
Editura: Springer Fachmedien Wiesbaden
Colecția Springer Vieweg
Locul publicării:Wiesbaden, Germany
Cuprins
Modeling Time Interval Data.- Querying for Time Interval Data.- Similarity of Time Interval Data.- An Information System for Time Interval Data Analysis.
Notă biografică
Philipp Meisen holds a doctoral degree from RWTH Aachen, where he was a research group leader at the Chair of Information Management in Mechanical Engineering.
Textul de pe ultima copertă
Philipp Meisen introduces a model, a query language, and a similarity measure enabling users to analyze time interval data. The introduced tools are combined to design and realize an information system. The presented system is capable of performing analytical tasks (avoiding any type of summarizability problems), providing insights, and visualizing results processing millions of intervals within milliseconds using an intuitive SQL-based query language. The heart of the solution is based on several bitmap-based indexes, which enable the system to handle huge amounts of time interval data.
Contents
- Modeling Time Interval Data
- Querying for Time Interval Data
- Similarity of Time Interval Data
- An Information System for Time Interval Data Analysis
Target Groups
- Researchers and students in the field of information management
- Business analysts and dispatchers in the fields of online analytical processing (OLAP), data warehousing (DW), business intelligence (BI), workforce management, and data science
The Author
Philipp Meisen holds a doctoral degree from RWTH Aachen, where he was a research group leader at the Chair of Information Management in Mechanical Engineering.
Caracteristici
Publication in the field of technical sciences Includes supplementary material: sn.pub/extras