Analyzing Within-subjects Experiments
Autor John W. Cottonen Limba Engleză Paperback – 30 mai 2014
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 241.83 lei 6-8 săpt. | |
Taylor & Francis – 30 mai 2014 | 241.83 lei 6-8 săpt. | |
Hardback (1) | 375.53 lei 6-8 săpt. | |
Taylor & Francis – 1998 | 375.53 lei 6-8 săpt. |
Preț: 241.83 lei
Nou
Puncte Express: 363
Preț estimativ în valută:
46.29€ • 48.11$ • 38.34£
46.29€ • 48.11$ • 38.34£
Carte tipărită la comandă
Livrare economică 05-19 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781138002999
ISBN-10: 1138002992
Pagini: 352
Dimensiuni: 152 x 229 mm
Greutate: 0.5 kg
Ediția:1
Editura: Taylor & Francis
Colecția Psychology Press
Locul publicării:Oxford, United Kingdom
ISBN-10: 1138002992
Pagini: 352
Dimensiuni: 152 x 229 mm
Greutate: 0.5 kg
Ediția:1
Editura: Taylor & Francis
Colecția Psychology Press
Locul publicării:Oxford, United Kingdom
Public țintă
ProfessionalCuprins
Contents: Preface. An Orientation to Within-Subject Designs. Two-Way Experimental Plans: Split-Plot and Randomized Block Designs. Analyzing Data From a Randomized Block Design Experiment That May Exhibit Time-Related Effects. Interpreting Estimability Information and Reported Estimates of Parameters in SAS(r) GLM Programs. Analyzing Data From Within-Subject Factorial Designs, Taking Into Account Stage-of-Practice Effects. Pretest-Posttest Control Group Designs: Comparing Different Treatment Groups After Pretesting. Switching Treatments in Blocks: AmAm, AmBm, BmAm, or BmBm Patterns With m Stages. ALL M's SHOULD BE SUPERSCRIPT EXCEPT FOR THE LAST ONE. Appendices: A Little About Matrices and Vectors. Using the Gauss Matrix Programming Language.
Recenzii
"Analyzing Within-Subjects Experiments is a unique book. It is written for behavioral researchers, it covers a category of experimental designs..."
—Contemporary Psychology
—Contemporary Psychology
Descriere
This volume focuses on computational techniques appropriate to the analysis of data from within-subjects and crossover within-subjects designs using various statistical packages. For statisticians, behavioral scientists, and researchers.