Applications of Machine Learning in Big-Data Analytics and Cloud Computing: River Publishers Series in Information Science and Technology
Editat de Subhendu Kumar Pani, Somanath Tripathy, George Jandieri, Sumit Kundu, Talal Ashraf Butten Limba Engleză Hardback – 31 iul 2021
This book introduces the state-of-the-art trends and advances in the use of Machine Learning in Cloud and Big Data Analytics. The book will serve as a reference for Data Scientists, systems architects, developers, new researchers and graduate level students in Computer and Data science. The book will describe the concepts necessary to understand current Machine Learning issues, challenges and possible solutions as well as upcoming trends in Big Data Analytics.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 251.72 lei 6-8 săpt. | |
River Publishers – 21 oct 2024 | 251.72 lei 6-8 săpt. | |
Hardback (1) | 750.52 lei 6-8 săpt. | |
River Publishers – 31 iul 2021 | 750.52 lei 6-8 săpt. |
Preț: 750.52 lei
Preț vechi: 938.14 lei
-20% Nou
Puncte Express: 1126
Preț estimativ în valută:
143.65€ • 149.31$ • 118.99£
143.65€ • 149.31$ • 118.99£
Carte tipărită la comandă
Livrare economică 05-19 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9788770221825
ISBN-10: 8770221820
Pagini: 346
Dimensiuni: 156 x 234 x 23 mm
Greutate: 0.6 kg
Ediția:1
Editura: River Publishers
Colecția River Publishers
Seria River Publishers Series in Information Science and Technology
ISBN-10: 8770221820
Pagini: 346
Dimensiuni: 156 x 234 x 23 mm
Greutate: 0.6 kg
Ediția:1
Editura: River Publishers
Colecția River Publishers
Seria River Publishers Series in Information Science and Technology
Cuprins
Applications of Machine Learning in Big-Data Analytics and Cloud Computing
Notă biografică
Subhendu Kumar Pani, Somanath Tripathy, George Jandieri, Sumit Kundu, Talal Ashraf Butt
Descriere
This book introduces the state-of-the-art trends and advances in the use of Machine Learning in Cloud and Big Data Analytics. The book will serve as a reference for Data Scientists, systems architects, developers, new researchers and graduate level students in Computer and Data science.