Applied Linear Models with SAS
Autor Daniel Zeltermanen Limba Engleză Hardback – 9 mai 2010
Preț: 528.40 lei
Preț vechi: 593.71 lei
-11% Nou
Puncte Express: 793
Preț estimativ în valută:
101.17€ • 105.35$ • 83.94£
101.17€ • 105.35$ • 83.94£
Carte tipărită la comandă
Livrare economică 13-27 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780521761598
ISBN-10: 052176159X
Pagini: 288
Ilustrații: 69 b/w illus. 104 tables 118 exercises
Dimensiuni: 182 x 262 x 21 mm
Greutate: 0.66 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
ISBN-10: 052176159X
Pagini: 288
Ilustrații: 69 b/w illus. 104 tables 118 exercises
Dimensiuni: 182 x 262 x 21 mm
Greutate: 0.66 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
Cuprins
1. Introduction; 2. Principles of statistics; 3. Introduction to linear regression; 4. Assessing the regression; 5. Multiple linear regression; 6. Indicators, interactions, and transformations; 7. Nonparametric statistics; 8. Logistic regression; 9. Diagnostics for logistic regression; 10. Poisson regression; 11. Survival analysis; 12. Proportional hazards regression; 13. Review of methods; Appendix: statistical tables.
Recenzii
"The author is an established and immensely experienced biostatistical and statistical researcher, and an excellent educator and speaker. His skill in teaching and presentation is very obvious in the engaging, sometime humorous, and easily comprehensible presentation style of the book. I will definitely keep a copy of this book on hand for my nonstatistical collaborators and even undergraduate students interested in a lucid yet thorough introduction to day-to-day biostatistical methods and applied data analysis."
Debajyoti Sinha, The American Statistician
Debajyoti Sinha, The American Statistician
Notă biografică
Descriere
This textbook for a second course in basic statistics for undergraduates or first-year graduate students introduces linear regression models using SAS.