Approximation Algorithms and Semidefinite Programming
Autor Bernd Gärtner, Jiri Matouseken Limba Engleză Paperback – 22 feb 2014
There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms.
This book follows the “semidefinite side” of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 443.52 lei 43-57 zile | |
Springer Berlin, Heidelberg – 22 feb 2014 | 443.52 lei 43-57 zile | |
Hardback (1) | 519.73 lei 43-57 zile | |
Springer Berlin, Heidelberg – 13 ian 2012 | 519.73 lei 43-57 zile |
Preț: 443.52 lei
Nou
Puncte Express: 665
Preț estimativ în valută:
84.88€ • 88.17$ • 70.51£
84.88€ • 88.17$ • 70.51£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642433320
ISBN-10: 3642433324
Pagini: 264
Ilustrații: XI, 251 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.37 kg
Ediția:2012
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642433324
Pagini: 264
Ilustrații: XI, 251 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.37 kg
Ediția:2012
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
GraduateCuprins
Part I (by Bernd Gärtner): 1 Introduction: MAXCUT via Semidefinite Programming.- 2 Semidefinite Programming.- 3 Shannon Capacity and Lovász Theta.- 4 Duality and Cone Programming.- 5 Approximately Solving Semidefinite Programs.- 6 An Interior-Point Algorithm for Semidefinite Programming.- 7 Compositive Programming.- Part II (by Jiri Matousek): 8 Lower Bounds for the Goemans–Williamson MAXCUT Algorithm .- 9 Coloring 3-Chromatic Graphs.- 10 Maximizing a Quadratic Form on a Graph.- 11 Colorings With Low Discrepancy.- 12 Constraint Satisfaction Problems, and Relaxing Them Semidefinitely.- 13 Rounding Via Miniatures.- Summary.- References.- Index.
Textul de pe ultima copertă
Semidefinite programs constitute one of the largest classes of optimization problems that can be solved with reasonable efficiency - both in theory and practice. They play a key role in a variety of research areas, such as combinatorial optimization, approximation algorithms, computational complexity, graph theory, geometry, real algebraic geometry and quantum computing. This book is an introduction to selected aspects of semidefinite programming and its use in approximation algorithms. It covers the basics but also a significant amount of recent and more advanced material.
There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms.
This book follows the “semidefinite side” of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms.
There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms.
This book follows the “semidefinite side” of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms.
Caracteristici
First textbook treatment of an often-taught topic Combines in-depth treatment of classical material with coverage of very recent developments Every chapter comes with an extensive list of exercises Includes supplementary material: sn.pub/extras