Archiving Strategies for Evolutionary Multi-objective Optimization Algorithms: Studies in Computational Intelligence, cartea 938
Autor Oliver Schütze, Carlos Hernándezen Limba Engleză Paperback – 6 ian 2022
This book presents an overview of archiving strategies developed over the last years by the authors that deal with suitable approximations of the sets of optimal and nearly optimal solutions of multi-objective optimization problems by means of stochastic search algorithms. All presented archivers are analyzed with respect to the approximation qualities of the limit archives that they generate and the upper bounds of the archive sizes. The convergence analysis will be done using a very broad framework that involves all existing stochastic search algorithms and that will only use minimal assumptions on the process to generate new candidate solutions. All of the presented archivers can effortlessly be coupled with any set-based multi-objective search algorithm such as multi-objective evolutionary algorithms, and the resulting hybrid method takes over the convergence properties of the chosen archiver. This book hence targets at all algorithm designers and practitioners in the fieldof multi-objective optimization.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 908.97 lei 6-8 săpt. | |
Springer International Publishing – 6 ian 2022 | 908.97 lei 6-8 săpt. | |
Hardback (1) | 915.10 lei 6-8 săpt. | |
Springer International Publishing – 5 ian 2021 | 915.10 lei 6-8 săpt. |
Din seria Studies in Computational Intelligence
- 50% Preț: 264.47 lei
- 70% Preț: 235.74 lei
- 20% Preț: 1134.78 lei
- 20% Preț: 966.66 lei
- 20% Preț: 938.57 lei
- 20% Preț: 1423.29 lei
- 20% Preț: 168.78 lei
- 18% Preț: 1089.74 lei
- 20% Preț: 636.14 lei
- 20% Preț: 1026.49 lei
- 20% Preț: 1546.90 lei
- 20% Preț: 630.47 lei
- 20% Preț: 644.20 lei
- 20% Preț: 973.14 lei
- 20% Preț: 970.73 lei
- 20% Preț: 969.90 lei
- 20% Preț: 1142.04 lei
- 20% Preț: 1415.20 lei
- 20% Preț: 1020.82 lei
- 20% Preț: 1026.49 lei
- 20% Preț: 1024.85 lei
- 18% Preț: 2449.69 lei
- 20% Preț: 969.09 lei
- 20% Preț: 1142.04 lei
- 20% Preț: 1140.44 lei
- 20% Preț: 1021.64 lei
- 20% Preț: 1430.55 lei
- 18% Preț: 1375.05 lei
- 18% Preț: 1102.11 lei
- 20% Preț: 1018.40 lei
- 20% Preț: 987.68 lei
- 20% Preț: 1024.07 lei
- 20% Preț: 1249.53 lei
- 20% Preț: 1019.22 lei
- 20% Preț: 968.30 lei
- 20% Preț: 1146.08 lei
- 20% Preț: 1138.80 lei
- 20% Preț: 1037.78 lei
- 20% Preț: 1140.44 lei
- 20% Preț: 1142.87 lei
- 20% Preț: 1429.76 lei
- 18% Preț: 985.35 lei
- 20% Preț: 977.17 lei
- 20% Preț: 1034.54 lei
- 20% Preț: 1258.40 lei
- 20% Preț: 973.92 lei
- 20% Preț: 1027.45 lei
- 20% Preț: 924.65 lei
- 20% Preț: 1149.31 lei
- 20% Preț: 1428.13 lei
Preț: 908.97 lei
Preț vechi: 1136.22 lei
-20% Nou
Puncte Express: 1363
Preț estimativ în valută:
173.94€ • 182.99$ • 144.01£
173.94€ • 182.99$ • 144.01£
Carte tipărită la comandă
Livrare economică 14-28 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030637750
ISBN-10: 3030637751
Ilustrații: XIII, 234 p. 130 illus., 44 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.35 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Cham, Switzerland
ISBN-10: 3030637751
Ilustrații: XIII, 234 p. 130 illus., 44 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.35 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Cham, Switzerland
Cuprins
Introduction.- Multi-objective Optimization.- The Framework.- Computing the Entire Pareto Front.- Computing Gap Free Pareto Fronts.- Using Archivers within MOEAs.- Test Problems.
Textul de pe ultima copertă
This book presents an overview of archiving strategies developed over the last years by the authors that deal with suitable approximations of the sets of optimal and nearly optimal solutions of multi-objective optimization problems by means of stochastic search algorithms. All presented archivers are analyzed with respect to the approximation qualities of the limit archives that they generate and the upper bounds of the archive sizes. The convergence analysis will be done using a very broad framework that involves all existing stochastic search algorithms and that will only use minimal assumptions on the process to generate new candidate solutions. All of the presented archivers can effortlessly be coupled with any set-based multi-objective search algorithm such as multi-objective evolutionary algorithms, and the resulting hybrid method takes over the convergence properties of the chosen archiver. This book hence targets at all algorithm designers and practitioners in the field of multi-objective optimization.
Caracteristici
Highlights recent research on Archiving Strategies for Evolutionary Multi-objective Optimization Algorithms Provides an overview of the different archiving methods which allow convergence of Multi-objective evolutionary algorithms in a stochastic sense Presents theory as well as applications