Cantitate/Preț
Produs

Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications: Applied Optimization, cartea 65

Autor E. de Klerk
en Limba Engleză Paperback – 10 dec 2010
Semidefinite programming has been described as linear programming for the year 2000. It is an exciting new branch of mathematical programming, due to important applications in control theory, combinatorial optimization and other fields. Moreover, the successful interior point algorithms for linear programming can be extended to semidefinite programming.
In this monograph the basic theory of interior point algorithms is explained. This includes the latest results on the properties of the central path as well as the analysis of the most important classes of algorithms. Several "classic" applications of semidefinite programming are also described in detail. These include the Lovász theta function and the MAX-CUT approximation algorithm by Goemans and Williamson.
Audience: Researchers or graduate students in optimization or related fields, who wish to learn more about the theory and applications of semidefinite programming.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 98765 lei  6-8 săpt.
  Springer Us – 10 dec 2010 98765 lei  6-8 săpt.
Hardback (1) 99374 lei  6-8 săpt.
  Springer Us – 31 mar 2002 99374 lei  6-8 săpt.

Din seria Applied Optimization

Preț: 98765 lei

Preț vechi: 123456 lei
-20% Nou

Puncte Express: 1481

Preț estimativ în valută:
18901 194100$ 15997£

Carte tipărită la comandă

Livrare economică 05-19 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781441952165
ISBN-10: 1441952160
Pagini: 308
Ilustrații: XVI, 288 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.44 kg
Ediția:Softcover reprint of the original 1st ed. 2002
Editura: Springer Us
Colecția Springer
Seria Applied Optimization

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

Theory and Algorithms.- Duality, Optimality, and Degeneracy.- The Central Path.- Self-Dual Embeddings.- The Primal Logarithmic Barrier Method.- Primal-Dual Affine-Scaling Methods.- Primal-Dual Path-Following Methods.- Primal-Dual Potential Reduction Methods.- Selected Applications.- Convex Quadratic Approximation.- The Lovász ?-Function.- Graph Coulouring and the Max-K-Cut Problem.- The Stability Number of a Graph and Standard Quadratic Optimization.- The Satisfiability Problem.