Cantitate/Preț
Produs

Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions: Encyclopedia of Mathematics and its Applications, cartea 118

Autor A. A. Borovkov, K. A. Borovkov
en Limba Engleză Hardback – 11 iun 2008
This book focuses on the asymptotic behaviour of the probabilities of large deviations of the trajectories of random walks with 'heavy-tailed' (in particular, regularly varying, sub- and semiexponential) jump distributions. Large deviation probabilities are of great interest in numerous applied areas, typical examples being ruin probabilities in risk theory, error probabilities in mathematical statistics, and buffer-overflow probabilities in queueing theory. The classical large deviation theory, developed for distributions decaying exponentially fast (or even faster) at infinity, mostly uses analytical methods. If the fast decay condition fails, which is the case in many important applied problems, then direct probabilistic methods usually prove to be efficient. This monograph presents a unified and systematic exposition of the large deviation theory for heavy-tailed random walks. Most of the results presented in the book are appearing in a monograph for the first time. Many of them were obtained by the authors.
Citește tot Restrânge

Din seria Encyclopedia of Mathematics and its Applications

Preț: 124127 lei

Preț vechi: 144334 lei
-14% Nou

Puncte Express: 1862

Preț estimativ în valută:
23758 24709$ 19909£

Carte tipărită la comandă

Livrare economică 13-27 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780521881173
ISBN-10: 052188117X
Pagini: 656
Ilustrații: 5 b/w illus.
Dimensiuni: 162 x 242 x 48 mm
Greutate: 1.23 kg
Ediția:New.
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Encyclopedia of Mathematics and its Applications

Locul publicării:Cambridge, United Kingdom

Cuprins

Introduction; 1. Preliminaries; 2. Random walks with jumps having no finite first moment; 3. Random walks with finite mean and infinite variance; 4. Random walks with jumps having finite variance; 5. Random walks with semiexponential jump distributions; 6. Random walks with exponentially decaying distributions; 7. Asymptotic properties of functions of distributions; 8. On the asymptotics of the first hitting times; 9. Large deviation theorems for sums of random vectors; 10. Large deviations in the space of trajectories; 11. Large deviations of sums of random variables of two types; 12. Non-identically distributed jumps with infinite second moments; 13. Non-identically distributed jumps with finite variances; 14. Random walks with dependent jumps; 15. Extension to processes with independent increments; 16. Extensions to generalised renewal processes; Bibliographic notes; Index of notations; Bibliography.

Recenzii

'This book is a worthy tribute to the amazing fecundity of the structure of random walks!' Mathematical Reviews
'… an up-to-date, unified and systematic exposition of the field. Most of the results presented are appearing in a monograph for the first time and a good proportion of them were obtained by the authors. … The book presents some beautiful and useful mathematics that may attract a number of probabilists to the large deviations topic in probability.' EMS Newsletter

Notă biografică


Descriere

A comprehensive monograph presenting a unified systematic exposition of the large deviations theory for heavy-tailed random walks.