Cantitate/Preț
Produs

Asymptotic Combinatorics with Applications to Mathematical Physics: A European Mathematical Summer School held at the Euler Institute, St. Petersburg, Russia, July 9-20, 2001: Lecture Notes in Mathematics, cartea 1815

Editat de Anatoly M. Vershik
en Limba Engleză Paperback – 20 iun 2003
At the Summer School Saint Petersburg 2001, the main lecture courses bore on recent progress in asymptotic representation theory: those written up for this volume deal with the theory of representations of infinite symmetric groups, and groups of infinite matrices over finite fields; Riemann-Hilbert problem techniques applied to the study of spectra of random matrices and asymptotics of Young diagrams with Plancherel measure; the corresponding central limit theorems; the combinatorics of modular curves and random trees with application to QFT; free probability and random matrices, and Hecke algebras.
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 37826 lei

Nou

Puncte Express: 567

Preț estimativ în valută:
7239 7520$ 6013£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540403128
ISBN-10: 3540403124
Pagini: 260
Ilustrații: X, 250 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.37 kg
Ediția:2003
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Random matrices, orthogonal polynomials and Riemann — Hilbert problem.- Asymptotic representation theory and Riemann — Hilbert problem.- Four Lectures on Random Matrix Theory.- Free Probability Theory and Random Matrices.- Algebraic geometry,symmetric functions and harmonic analysis.- A Noncommutative Version of Kerov’s Gaussian Limit for the Plancherel Measure of the Symmetric Group.- Random trees and moduli of curves.- An introduction to harmonic analysis on the infinite symmetric group.- Two lectures on the asymptotic representation theory and statistics of Young diagrams.- III Combinatorics and representation theory.- Characters of symmetric groups and free cumulants.- Algebraic length and Poincaré series on reflection groups with applications to representations theory.- Mixed hook-length formula for degenerate a fine Hecke algebras.