Information and Coding Theory: Springer Undergraduate Mathematics Series
Autor Gareth A. Jones, J.Mary Jonesen Limba Engleză Paperback – 26 iun 2000
Din seria Springer Undergraduate Mathematics Series
- Preț: 237.18 lei
- Preț: 265.90 lei
- Preț: 236.87 lei
- Preț: 318.98 lei
- Preț: 236.97 lei
- Preț: 238.07 lei
- Preț: 237.29 lei
- Preț: 358.81 lei
- Preț: 323.37 lei
- Preț: 229.86 lei
- Preț: 318.68 lei
- Preț: 268.36 lei
- Preț: 359.65 lei
- Preț: 240.68 lei
- Preț: 237.41 lei
- Preț: 240.63 lei
- Preț: 283.11 lei
- Preț: 180.20 lei
- Preț: 261.27 lei
- Preț: 264.48 lei
- 15% Preț: 516.05 lei
- Preț: 267.87 lei
- Preț: 260.04 lei
- Preț: 269.76 lei
- Preț: 272.58 lei
- Preț: 313.77 lei
- Preț: 270.14 lei
- Preț: 267.14 lei
- Preț: 258.88 lei
- Preț: 265.81 lei
- Preț: 267.89 lei
- Preț: 271.67 lei
- Preț: 261.27 lei
- Preț: 270.14 lei
- Preț: 321.50 lei
- Preț: 260.37 lei
- Preț: 264.68 lei
- Preț: 265.07 lei
- Preț: 268.05 lei
- Preț: 259.95 lei
- Preț: 259.95 lei
- Preț: 262.62 lei
- Preț: 267.30 lei
- Preț: 267.14 lei
- Preț: 265.64 lei
- Preț: 265.23 lei
- Preț: 260.37 lei
- Preț: 263.18 lei
- Preț: 265.23 lei
Preț: 319.90 lei
Nou
Puncte Express: 480
Preț estimativ în valută:
61.22€ • 63.59$ • 50.85£
61.22€ • 63.59$ • 50.85£
Carte disponibilă
Livrare economică 14-28 ianuarie 25
Livrare express 28 decembrie 24 - 03 ianuarie 25 pentru 32.19 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781852336226
ISBN-10: 1852336226
Pagini: 228
Ilustrații: XIII, 210 p. 5 illus.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.39 kg
Ediția:2000
Editura: SPRINGER LONDON
Colecția Springer
Seria Springer Undergraduate Mathematics Series
Locul publicării:London, United Kingdom
ISBN-10: 1852336226
Pagini: 228
Ilustrații: XIII, 210 p. 5 illus.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.39 kg
Ediția:2000
Editura: SPRINGER LONDON
Colecția Springer
Seria Springer Undergraduate Mathematics Series
Locul publicării:London, United Kingdom
Public țintă
Lower undergraduateCuprins
1. Source Coding.- 1.1 Definitions and Examples.- 1.2 Uniquely Decodable Codes.- 1.3 Instantaneous Codes.- 1.4 Constructing Instantaneous Codes.- 1.5 Kraft’s Inequality.- 1.6 McMillan’s Inequality.- 1.7 Comments on Kraft’s and McMillan’s Inequalities.- 1.8 Supplementary Exercises.- 2. Optimal Codes.- 2.1 Optimality.- 2.2 Binary Huffman Codes.- 2.3 Average Word-length of Huffman Codes.- 2.4 Optimality of Binary Huffman Codes.- 2.5 r-ary Huffman Codes.- 2.6 Extensions of Sources.- 2.7 Supplementary Exercises.- 3. Entropy.- 3.1 Information and Entropy.- 3.2 Properties of the Entropy Function.- 3.3 Entropy and Average Word-length.- 3.4 Shannon-Fano Coding.- 3.5 Entropy of Extensions and Products.- 3.6 Shannon’s First Theorem.- 3.7 An Example of Shannon’s First Theorem.- 3.8 Supplementary Exercises.- 4. Information Channels.- 4.1 Notation and Definitions.- 4.2 The Binary Symmetric Channel.- 4.3 System Entropies.- 4.4 System Entropies for the Binary Symmetric Channel.- 4.5 Extension of Shannon’s First Theorem to Information Channels.- 4.6 Mutual Information.- 4.7 Mutual Information for the Binary Symmetric Channel.- 4.8 Channel Capacity.- 4.9 Supplementary Exercises.- 5. Using an Unreliable Channel.- 5.1 Decision Rules.- 5.2 An Example of Improved Reliability.- 5.3 Hamming Distance.- 5.4 Statement and Outline Proof of Shannon’s Theorem.- 5.5 The Converse of Shannon’s Theorem.- 5.6 Comments on Shannon’s Theorem.- 5.7 Supplementary Exercises.- 6. Error-correcting Codes.- 6.1 Introductory Concepts.- 6.2 Examples of Codes.- 6.3 Minimum Distance.- 6.4 Hamming’s Sphere-packing Bound.- 6.5 The Gilbert-Varshamov Bound.- 6.6 Hadamard Matrices and Codes.- 6.7 Supplementary Exercises.- 7. Linear Codes.- 7.1 Matrix Description of Linear Codes.- 7.2 Equivalence ofLinear Codes.- 7.3 Minimum Distance of Linear Codes.- 7.4 The Hamming Codes.- 7.5 The Golay Codes.- 7.6 The Standard Array.- 7.7 Syndrome Decoding.- 7.8 Supplementary Exercises.- Suggestions for Further Reading.- Appendix A. Proof of the Sardinas-Patterson Theorem.- Appendix B. The Law of Large Numbers.- Appendix C. Proof of Shannon’s Fundamental Theorem.- Solutions to Exercises.- Index of Symbols and Abbreviations.
Caracteristici
Written by the authors of "Elementary Number Theory", a hugely popular SUMS title Information and Coding Theory are increasingly popular topics in undergraduate curricula: this is the first book to cover both topics in-depth in one volume Includes supplementary material: sn.pub/extras