Cantitate/Preț
Produs

Introductory Mathematics: Algebra and Analysis: Springer Undergraduate Mathematics Series

Autor Geoffrey C. Smith
en Limba Engleză Paperback – 14 ian 1998
Offers an introduction to pure mathematics. This text begins with sets, functions and relations, proof by induction and contradiction, complex numbers, vectors and matrices, and provides a brief introduction to group theory. It moves onto analysis, providing an introduction to epsilon-delta technology and finishes with continuity and functions.
Citește tot Restrânge

Din seria Springer Undergraduate Mathematics Series

Preț: 23729 lei

Nou

Puncte Express: 356

Preț estimativ în valută:
4542 4723$ 3800£

Carte disponibilă

Livrare economică 22 februarie-08 martie
Livrare express 08-14 februarie pentru 2752 lei

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540761785
ISBN-10: 3540761780
Pagini: 232
Ilustrații: XVI, 215 p. 1 illus.
Dimensiuni: 178 x 235 x 12 mm
Greutate: 0.4 kg
Ediția:1998
Editura: SPRINGER LONDON
Colecția Springer
Seria Springer Undergraduate Mathematics Series

Locul publicării:London, United Kingdom

Public țintă

Lower undergraduate

Cuprins

1. Sets, Functions and Relations.- 1.1 Sets.- 1.2 Subsets.- 1.3 Well-known Sets.- 1.4 Rationals, Reals and Pictures.- 1.5 Set Operations.- 1.6 Sets of Sets.- 1.7 Paradox.- 1.8 Set-theoretic Constructions.- 1.9 Notation.- 1.10 Venn Diagrams.- 1.11 Quantifiers and Negation.- 1.12 Informal Description of Maps.- 1.13 Injective, Surjective and Bijective Maps.- 1.14 Composition of Maps.- 1.15 Graphs and Respectability Reclaimed.- 1.16 Characterizing Bijections.- 1.17 Sets of Maps.- 1.18 Relations.- 1.19 Intervals.- 2. Proof.- 2.1 Induction.- 2.2 Complete Induction.- 2.3 Counter-examples and Contradictions.- 2.4 Method of Descent.- 2.5 Style.- 2.6 Implication.- 2.7 Double Implication.- 2.8 The Master Plan.- 3. Complex Numbers and Related Functions.- 3.1 Motivation.- 3.2 Creating the Complex Numbers.- 3.3 A Geometric Interpretation.- 3.4 Sine, Cosine and Polar Form.- 3.5 e.- 3.6 Hyperbolic Sine and Hyperbolic Cosine.- 3.7 Integration Tricks.- 3.8 Extracting Roots and Raising to Powers.- 3.9 Logarithm.- 3.10 Power Series.- 4. Vectors and Matrices.- 4.1 Row Vectors.- 4.2 Higher Dimensions.- 4.3 Vector Laws.- 4.4 Lengths and Angles.- 4.5 Position Vectors.- 4.6 Matrix Operations.- 4.7 Laws of Matrix Algebra.- 4.8 Identity Matrices and Inverses.- 4.9 Determinants.- 4.10 Geometry of Determinants.- 4.11 Linear Independence.- 4.12 Vector Spaces.- 4.13 Transposition.- 5. Group Theory.- 5.1 Permutations.- 5.2 Inverse Permutations.- 5.3 The Algebra of Permutations.- 5.4 The Order of a Permutation.- 5.5 Permutation Groups.- 5.6 Abstract Groups.- 5.7 Subgroups.- 5.8 Cosets.- 5.9 Cyclic Groups.- 5.10 Isomorphism.- 5.11 Homomorphism.- 6. Sequences and Series.- 6.1 Denary and Decimal Sequences.- 6.2 The Real Numbers.- 6.3 Notation for Sequences.- 6.4 Limits of Sequences.- 6.5 The CompletenessAxiom.- 6.6 Limits of Sequences Revisited.- 6.7 Series.- 7. Mathematical Analysis.- 7.1 Continuity.- 7.2 Limits.- 8. Creating the Real Numbers.- 8.1 Dedekind’s Construction.- 8.2 Construction via Cauchy Sequences.- 8.3 A Sting in the Tail: p-adic numbers.- Further Reading.- Solutions.

Caracteristici

A book for students to read before university Completely self-contained, readers can work their own way through and check their understanding against the many solutions provided to exercises of varying difficulty Lively style provides an interesting read Includes supplementary material: sn.pub/extras