Cantitate/Preț
Produs

Automatic Differentiation of Algorithms: From Simulation to Optimization

Editat de George Corliss, Christele Faure, Andreas Griewank, Laurent Hascoet, Uwe Naumann
en Limba Engleză Paperback – 27 ian 2014
Automatic Differentiation (AD) is a maturing computational technology and has become a mainstream tool used by practicing scientists and computer engineers. The rapid advance of hardware computing power and AD tools has enabled practitioners to quickly generate derivative-enhanced versions of their code for a broad range of applications in applied research and development.
Automatic Differentiation of Algorithms provides a comprehensive and authoritative survey of all recent developments, new techniques, and tools for AD use. The book covers all aspects of the subject: mathematics, scientific programming (i.e., use of adjoints in optimization) and implementation (i.e., memory management problems). A strong theme of the book is the relationships between AD tools and other software tools, such as compilers and parallelizers. A rich variety of significant applications are presented as well, including optimum-shape design problems, for which AD offers more efficient tools and techniques.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 32783 lei  6-8 săpt.
  Springer – 27 ian 2014 32783 lei  6-8 săpt.
Hardback (1) 33147 lei  6-8 săpt.
  Springer – 8 ian 2002 33147 lei  6-8 săpt.

Preț: 32783 lei

Preț vechi: 40978 lei
-20% Nou

Puncte Express: 492

Preț estimativ în valută:
6274 6619$ 5229£

Carte tipărită la comandă

Livrare economică 02-16 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781461265436
ISBN-10: 1461265436
Pagini: 464
Ilustrații: XXVII, 432 p. 84 illus.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.64 kg
Ediția:Softcover reprint of the original 1st ed. 2002
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States

Public țintă

Professional/practitioner

Cuprins

Part titles: Invited Contributions.- Parameter Identification and Least Squares.- Applications in Ode's and Optimal Control.- Applications in PDE's.- Applications in Science and Engineering.- Maintaining and Enhancing Parallelism.- Exploiting Structure and Sparsity.- Space-Time Tradeoffs in the Reverse Mode.- Use of Second and Higher Derivatives.- Error Estimates and Inclusions.