Cantitate/Preț
Produs

Basic Modeling and Theory of Creep of Metallic Materials: Springer Series in Materials Science, cartea 339

Autor Rolf Sandström
en Limba Engleză Hardback – 10 ian 2024
This open access book features an in-depth exploration of the intricate creep behavior exhibited by metallic materials, with a specific focus on elucidating the underlying mechanical properties governing their response at elevated temperatures, particularly in the context of polycrystalline alloys. Traditional approaches to characterizing mechanical properties have historically relied upon empirical models replete with numerous adjustable parameters, painstakingly tuned to match experimental data. While these methods offer practical simplicity, they often yield outcomes that defy meaningful extrapolation and application to novel systems, invariably necessitating the recalibration of parameters afresh.

In stark contrast, this book compiles a compendium of models sourced from the scientific literature, meticulously crafted through ab initio methodologies rooted in fundamental physical principles. Notably, these models stand apart by their conspicuous absenceof adjustable parameters. This pioneering effort is envisioned as a groundbreaking initiative, marking the first of its kind in the field. The resulting models, bereft of arbitrary tuning, offer a level of predictability hitherto unattained. Notably, they provide a secure foundation for ascertaining operational mechanisms, contributing significantly to enhancing our understanding of material behavior in high-temperature environments.

This open access book is a valuable resource for researchers and seasoned students engaged in the study of creep phenomena in metallic materials. Readers will find a comprehensive exposition of these novel, parameter-free models, facilitating a deeper comprehension of the intricate mechanics governing material deformation at elevated temperatures.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 29758 lei  39-44 zile
  Springer Nature Switzerland – 10 ian 2024 29758 lei  39-44 zile
Hardback (1) 43347 lei  3-5 săpt.
  Springer Nature Switzerland – 10 ian 2024 43347 lei  3-5 săpt.

Din seria Springer Series in Materials Science

Preț: 43347 lei

Nou

Puncte Express: 650

Preț estimativ în valută:
8295 8671$ 7010£

Carte disponibilă

Livrare economică 13-27 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031495069
ISBN-10: 3031495063
Pagini: 310
Ilustrații: XIII, 310 p. 161 illus., 154 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.7 kg
Ediția:1st ed. 2024
Editura: Springer Nature Switzerland
Colecția Springer
Seria Springer Series in Materials Science

Locul publicării:Cham, Switzerland

Cuprins

The role of fundamental modeling.-Stationary creep.-Stress strain curves.-Primary creep.-Creep with low stress exponents.-Solid Solution Hardening.-Precipitation Hardening.-Cells and subgrains: The role of cold work.-Grain boundary sliding.-Cavitation.-The role of cavitation in creep-fatigue interaction.-Tertiary creep.- Creep ductility.-Extrapolation.


Notă biografică

Rolf Sandström, a distinguished Professor Emeritus in Applied Materials Technology at the KTH Royal Institute of Technology in Stockholm, Sweden, has dedicated his recent research endeavors to pioneering the development of fundamental models for mechanical properties. These models, characterized by their unique absence of adjustable parameters and inspired by ab initio methodologies, offer a groundbreaking level of predictability. They enable the precise identification of operational mechanisms and facilitate the extrapolation of findings to diverse conditions.
Sandström's contributions encompass a wide range of critical aspects in materials science, including dislocation creep, solid solution hardening during creep, precipitation hardening during creep, the impact of prior cold work on creep life, primary and tertiary creep, initiation and growth of creep cavities, and the development of cell and subgrain dislocation structures. 

Textul de pe ultima copertă

This open access book features an in-depth exploration of the intricate creep behavior exhibited by metallic materials, with a specific focus on elucidating the underlying mechanical properties governing their response at elevated temperatures, particularly in the context of polycrystalline alloys. Traditional approaches to characterizing mechanical properties have historically relied upon empirical models replete with numerous adjustable parameters, painstakingly tuned to match experimental data. While these methods offer practical simplicity, they often yield outcomes that defy meaningful extrapolation and application to novel systems, invariably necessitating the recalibration of parameters afresh.

In stark contrast, this book compiles a compendium of models sourced from the scientific literature, meticulously crafted through ab initio methodologies rooted in fundamental physical principles. Notably, these models stand apart by their conspicuous absence of adjustable parameters. This pioneering effort is envisioned as a groundbreaking initiative, marking the first of its kind in the field. The resulting models, bereft of arbitrary tuning, offer a level of predictability hitherto unattained. Notably, they provide a secure foundation for ascertaining operational mechanisms, contributing significantly to enhancing our understanding of material behavior in high-temperature environments.

This open access book is a valuable resource for researchers and seasoned students engaged in the study of creep phenomena in metallic materials. Readers will find a comprehensive exposition of these novel, parameter-free models, facilitating a deeper comprehension of the intricate mechanics governing material deformation at elevated temperatures.

Caracteristici

Provides a comprehensive introduction to basic modelling of mechanical properties of creep in metals Includes detailed comparison with experimental data Significantly contributes to enhancing understanding of material behavior in high-temperature environments. This book is open access, which means that you have free and unlimited access