Cantitate/Preț
Produs

Bayesian Economics Through Numerical Methods: A Guide to Econometrics and Decision-Making with Prior Information

Autor Jeffrey H. Dorfman
en Limba Engleză Hardback – 31 iul 1997
The aim of this book is to provide researchers in economics, finance, and statistics with an up-to-date introduction to applying Bayesian techniques to empirical studies. It covers the full range of the new numerical techniques which have been developed over the last thirty years, notably: Monte Carlo sampling, antithetic replication, importance sampling, and Gibbs sampling. The author covers both advances in theory and modern approaches to numerical and applied problems. The book includes applications drawn from a variety of different fields within economics and also provides a quick overview to the underlying statistical ideas of Bayesian thought. The result is a book which presents a roadmap of applied economic questions that can now be addressed empirically with Bayesian methods. Consequently, many researchers will find this a readily readable survey of this growing research topic.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 37834 lei  6-8 săpt.
  Springer – 8 mar 2013 37834 lei  6-8 săpt.
Hardback (1) 38409 lei  6-8 săpt.
  Springer – 31 iul 1997 38409 lei  6-8 săpt.

Preț: 38409 lei

Nou

Puncte Express: 576

Preț estimativ în valută:
7353 7566$ 6198£

Carte tipărită la comandă

Livrare economică 01-15 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387982335
ISBN-10: 0387982337
Pagini: 110
Ilustrații: VIII, 110 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.32 kg
Ediția:1997
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States

Public țintă

Graduate

Cuprins

Theory and Basics.- A Quick Course in Bayesian Statistics and Decision Theory.- New Advances in Numerical Bayesian Techniques.- Applications in Econometrics.- Imposing Economic Theory.- Studying Parameters of Interest.- Unit Root and Cointegration Tests.- Model Specification Uncertainty.- Forecasting.- More Realistic Models Through Numerical Methods.- Applications to Economic Decision Making.- Decision Theory Applications.