Cantitate/Preț
Produs

Bayesian Inference for Stochastic Processes

Autor Lyle D. Broemeling
en Limba Engleză Hardback – 15 dec 2017
This is the first book designed to introduce Bayesian inference procedures for stochastic processes. There are clear advantages to the Bayesian approach (including the optimal use of prior information). Initially, the book begins with a brief review of Bayesian inference and uses many examples relevant to the analysis of stochastic processes, including the four major types, namely those with discrete time and discrete state space and continuous time and continuous state space. The elements necessary to understanding stochastic processes are then introduced, followed by chapters devoted to the Bayesian analysis of such processes. It is important that a chapter devoted to the fundamental concepts in stochastic processes is included. Bayesian inference (estimation, testing hypotheses, and prediction) for discrete time Markov chains, for Markov jump processes, for normal processes (e.g. Brownian motion and the Ornstein–Uhlenbeck process), for traditional time series, and, lastly, for point and spatial processes are described in detail. Heavy emphasis is placed on many examples taken from biology and other scientific disciplines. In order analyses of stochastic processes, it will use R and WinBUGS.
Features:
  • Uses the Bayesian approach to make statistical Inferences about stochastic processes
  • The R package is used to simulate realizations from different types of processes
  • Based on realizations from stochastic processes, the WinBUGS package will provide the Bayesian analysis (estimation, testing hypotheses, and prediction) for the unknown parameters of stochastic processes
  • To illustrate the Bayesian inference, many examples taken from biology, economics, and astronomy will reinforce the basic concepts of the subject
  • A practical approach is implemented by considering realistic examples of interest to the scientific community
  • WinBUGS and R code are provided in the text, allowing the reader to easily verify the results of the inferential procedures found in the many examples of the book

Readers with a good background in two areas, probability theory and statistical inference, should be able to master the essential ideas of this book.








Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 31243 lei  43-57 zile
  CRC Press – 30 iun 2020 31243 lei  43-57 zile
Hardback (1) 85712 lei  43-57 zile
  CRC Press – 15 dec 2017 85712 lei  43-57 zile

Preț: 85712 lei

Preț vechi: 114596 lei
-25% Nou

Puncte Express: 1286

Preț estimativ în valută:
16405 16906$ 13850£

Carte tipărită la comandă

Livrare economică 03-17 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781138196131
ISBN-10: 1138196134
Pagini: 448
Ilustrații: 30 Illustrations, black and white
Dimensiuni: 178 x 254 x 29 mm
Greutate: 0.98 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Locul publicării:Boca Raton, United States

Cuprins

1. Introduction to Bayesian Inference for Stochastic Processes
2. Bayesian Analysis
3. Introduction to Stochastic Processes
4. Bayesian Inference for Discrete Markov Chains
5. Examples of Markov Chains in Biology
6. Inferences for Markov Chains in Continuous Time
7. Bayesian Inference: Examples of Continuous-Time Markov Chains
8. Bayesian Inferences for Normal Processes
9. Queues and Time Series

Notă biografică

Lyle D. Broemeling, Ph.D., is Director of Broemeling and Associates Inc., and is a consulting biostatistician. He has been involved with academic health science centers for about 20 years and has taught and been a consultant at the University of Texas Medical Branch in Galveston, The University of Texas MD Anderson Cancer Center and the University of Texas School of Public Health. His main interest is in developing Bayesian methods for use in medical and biological problems and in authoring textbooks in statistics. His previous books are Bayesian Biostatistics and Diagnostic Medicine, and Bayesian Methods for Agreement

Recenzii

"Readers with a good background in the two areas, probability theory and statistical inference, should be able to master the essential ideas of this book."~ Ludwig Paditz, Dresden
". . .All three important types of Bayesian inferences such are estimation, hypothesis testing and forecasting are considered and many examples are worked through using R and WinBUGS codes. . .  It will prove useful for students and scientists who want to learn about Bayesian analysis in stochastic processes." ~Miroslav M. Ristic, Stat Papers

Descriere

The book aims to introduce Bayesian inference methods for stochastic processes. The Bayesian approach has advantages compared to non-Bayesian, among which is the optimal use of prior information via data from previous similar experiments. Examples from biology, economics, and astronomy reinforce the basic concepts of the subject. R and WinBUGS.