Bayesian Modeling of Uncertainty in Low-Level Vision: The Springer International Series in Engineering and Computer Science, cartea 79
Autor Richard Szeliskien Limba Engleză Paperback – 7 oct 2011
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 623.29 lei 6-8 săpt. | |
Springer Us – 7 oct 2011 | 623.29 lei 6-8 săpt. | |
Hardback (1) | 629.36 lei 6-8 săpt. | |
Springer Us – 30 sep 1989 | 629.36 lei 6-8 săpt. |
Din seria The Springer International Series in Engineering and Computer Science
- Preț: 119.98 lei
- 24% Preț: 1041.94 lei
- 20% Preț: 422.80 lei
- Preț: 206.35 lei
- 20% Preț: 313.25 lei
- 20% Preț: 625.07 lei
- 23% Preț: 637.95 lei
- 18% Preț: 1190.42 lei
- 18% Preț: 937.34 lei
- 20% Preț: 627.60 lei
- 18% Preț: 921.55 lei
- 20% Preț: 628.10 lei
- 15% Preț: 619.21 lei
- 20% Preț: 625.38 lei
- 18% Preț: 921.99 lei
- 20% Preț: 626.01 lei
- 20% Preț: 966.36 lei
- 20% Preț: 627.46 lei
- 18% Preț: 919.68 lei
- 20% Preț: 966.99 lei
- 18% Preț: 929.52 lei
- 20% Preț: 626.50 lei
- 15% Preț: 630.93 lei
- 18% Preț: 922.94 lei
- 18% Preț: 1186.29 lei
- 18% Preț: 930.14 lei
- 15% Preț: 625.55 lei
- 18% Preț: 921.25 lei
- 18% Preț: 920.17 lei
- 20% Preț: 1247.75 lei
Preț: 623.29 lei
Preț vechi: 779.11 lei
-20% Nou
Puncte Express: 935
Preț estimativ în valută:
119.30€ • 124.34$ • 99.31£
119.30€ • 124.34$ • 99.31£
Carte tipărită la comandă
Livrare economică 04-18 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461289043
ISBN-10: 1461289041
Pagini: 220
Ilustrații: XX, 198 p.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.31 kg
Ediția:Softcover reprint of the original 1st ed. 1989
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science
Locul publicării:New York, NY, United States
ISBN-10: 1461289041
Pagini: 220
Ilustrații: XX, 198 p.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.31 kg
Ediția:Softcover reprint of the original 1st ed. 1989
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Introduction.- 1.1 Modeling uncertainty in low-level vision.- 1.2 Previous work.- 1.3 Overview of results.- 1.4 Organization.- 2 Representations for low-level vision.- 2.1 Visible surface representations.- 2.2 Visible surface algorithms.- 2.3 Multiresolution representations.- 2.4 Discontinuities.- 2.5 Alternative representations.- 3 Bayesian models and Markov Random Fields.- 3.1 Bayesian models.- 3.2 Markov Random Fields.- 3.3 Using probabilistic models.- 4 Prior models.- 4.1 Regularization and fractal priors.- 4.2 Generating constrained fractals.- 4.3 Relative depth representations (reprise).- 4.4 Mechanical vs. probabilistic models.- 5 Sensor models.- 5.1 Sparse data: spring models.- 5.2 Sparse data: force field models.- 5.3 Dense data: optical flow.- 5.4 Dense data: image intensities.- 6 Posterior estimates.- 6.1 MAP estimation.- 6.2 Uncertainty estimation.- 6.3 Regularization parameter estimation.- 6.4 Motion estimation without correspondence.- 7 Incremental algorithms for depth-from-motion.- 7.1 Kaiman filtering.- 7.2 Incremental iconic depth-from-motion.- 7.3 Joint modeling of depth and intensity.- 8 Conclusions.- 8.1 Summary.- 8.2 Future research.- A Finite element implementation.- B Fourier analysis.- B.1 Filtering behavior of regularization.- B.2 Fourier analysis of the posterior distribution.- B.3 Analysis of gradient descent.- B.4 Finite element solution.- B.5 Fourier analysis of multigrid relaxation.- C Analysis of optical flow computation.- D Analysis of parameter estimation.- D.1 Computing marginal distributions.- D.2 Bayesian estimation equations.- D.3 Likelihood of observations.- Table of symbols.