Cantitate/Preț
Produs

BEM-based Finite Element Approaches on Polytopal Meshes: Lecture Notes in Computational Science and Engineering, cartea 130

Autor Steffen Weißer
en Limba Engleză Paperback – 14 aug 2020
This book introduces readers to one of the first methods developed for the numerical treatment of boundary value problems on polygonal and polyhedral meshes, which it subsequently analyzes and applies in various scenarios. The BEM-based finite element approaches employs implicitly defined trial functions, which are treated locally by means of boundary integral equations. A detailed construction of high-order approximation spaces is discussed and applied to uniform, adaptive and anisotropic polytopal meshes.
The main benefits of these general discretizations are the flexible handling they offer for meshes, and their natural incorporation of hanging nodes. This can especially be seen in adaptive finite element strategies and when anisotropic meshes are used. Moreover, this approach allows for problem-adapted approximation spaces as presented for convection-dominated diffusion equations. All theoretical results and considerations discussed in the book are verified and illustrated by several numerical examples and experiments.   Given its scope, the book will be of interest to mathematicians in the field of boundary value problems, engineers with a (mathematical) background in finite element methods, and advanced graduate students.
 

Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 64171 lei  6-8 săpt.
  Springer International Publishing – 14 aug 2020 64171 lei  6-8 săpt.
Hardback (1) 64572 lei  6-8 săpt.
  Springer International Publishing – 19 iul 2019 64572 lei  6-8 săpt.

Din seria Lecture Notes in Computational Science and Engineering

Preț: 64171 lei

Preț vechi: 75495 lei
-15% Nou

Puncte Express: 963

Preț estimativ în valută:
12285 12641$ 10355£

Carte tipărită la comandă

Livrare economică 01-15 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030209636
ISBN-10: 3030209636
Pagini: 246
Ilustrații: XVII, 246 p. 69 illus., 23 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.45 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Computational Science and Engineering

Locul publicării:Cham, Switzerland

Cuprins

1. Introduction.- 2. Finite element method on polytopal meshes.- 3. Interpolation of non-smooth functions and anisotropic polytopal meshes.- 4. Boundary integral equations and their approximations.- 5. Adaptive BEM-based finite element method.- 6. Developments of mixed and problem-adapted BEM-based FEM.

Textul de pe ultima copertă

This book introduces readers to one of the first methods developed for the numerical treatment of boundary value problems on polygonal and polyhedral meshes, which it subsequently analyzes and applies in various scenarios. The BEM-based finite element approaches employs implicitly defined trial functions, which are treated locally by means of boundary integral equations. A detailed construction of high-order approximation spaces is discussed and applied to uniform, adaptive and anisotropic polytopal meshes.
The main benefits of these general discretizations are the flexible handling they offer for meshes, and their natural incorporation of hanging nodes. This can especially be seen in adaptive finite element strategies and when anisotropic meshes are used. Moreover, this approach allows for problem-adapted approximation spaces as presented for convection-dominated diffusion equations. All theoretical results and considerations discussed in the book are verified and illustrated by several numerical examples and experiments.  
Given its scope, the book will be of interest to mathematicians in the field of boundary value problems, engineers with a (mathematical) background in finite element methods, and advanced graduate students.
 


Caracteristici

State-of-the-art introduction, mathematical analysis and applications of the BEM-based FEM combined in one monograph. One of the first methods designed for the treatment of boundary value problems on polygonal and polyhedral meshes. All theoretical results and considerations are illustrated by numerous computational examples and experiments in 2D and 3D. Broad discussion on the regularity of isotropic as well as anisotropic polygonal and polyhedral meshes, and on the resulting properties.