Bilinear Algebra: An Introduction to the Algebraic Theory of Quadratic Forms: Algebra, Logic and Applications
Autor Kazimierz Szymiczeken Limba Engleză Hardback – 5 sep 1997
Leading topics include the geometry of bilinear spaces, classification of bilinear spaces up to isometry depending on the ground field, formally real fields, Pfister forms, the Witt ring of an arbitrary field (characteristic two included), prime ideals of the Witt ring, Brauer group of a field, Hasse and Witt invariants of quadratic forms, and equivalence of fields with respect to quadratic forms. Problem sections are included at the end of each chapter. There are two appendices: the first gives a treatment of Hasse and Witt invariants in the language of Steinberg symbols, and the second contains some more advanced problems in 10 groups, including the u-invariant, reduced and stable Witt rings, and Witt equivalence of fields.
Preț: 1340.43 lei
Preț vechi: 1634.67 lei
-18% Nou
Puncte Express: 2011
Preț estimativ în valută:
256.54€ • 267.12$ • 216.80£
256.54€ • 267.12$ • 216.80£
Carte tipărită la comandă
Livrare economică 10-24 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789056990763
ISBN-10: 9056990764
Pagini: 498
Ilustrații: illustrations
Dimensiuni: 156 x 234 x 27 mm
Greutate: 0.84 kg
Ediția:1
Editura: CRC Press
Colecția Routledge
Seria Algebra, Logic and Applications
ISBN-10: 9056990764
Pagini: 498
Ilustrații: illustrations
Dimensiuni: 156 x 234 x 27 mm
Greutate: 0.84 kg
Ediția:1
Editura: CRC Press
Colecția Routledge
Seria Algebra, Logic and Applications
Public țintă
ProfessionalCuprins
Part I: Bilinear Spaces
Part II: Witt Rings
Part III: Invariants
Appendices (A) Symbolic Hasse and Witt Invariants
Appendices (B) Selected Problems
Part II: Witt Rings
Part III: Invariants
Appendices (A) Symbolic Hasse and Witt Invariants
Appendices (B) Selected Problems
Descriere
Giving an easily accessible elementary introduction to the algebraic theory of quadratic forms, this book covers both Witt's theory and Pfister's theory of quadratic forms.