Model Theoretic Algebra With Particular Emphasis on Fields, Rings, Modules: Algebra, Logic and Applications
Autor Christian.U Jensenen Limba Engleză Hardback – 26 iul 1989
Preț: 2924.85 lei
Preț vechi: 3970.26 lei
-26% Nou
Puncte Express: 4387
Preț estimativ în valută:
559.81€ • 583.46$ • 466.02£
559.81€ • 583.46$ • 466.02£
Comandă specială
Livrare economică 14-28 decembrie
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9782881247170
ISBN-10: 2881247172
Pagini: 458
Dimensiuni: 152 x 229 mm
Greutate: 0.82 kg
Ediția:1
Editura: CRC Press
Colecția Routledge
Seria Algebra, Logic and Applications
Locul publicării:Boca Raton, United States
ISBN-10: 2881247172
Pagini: 458
Dimensiuni: 152 x 229 mm
Greutate: 0.82 kg
Ediția:1
Editura: CRC Press
Colecția Routledge
Seria Algebra, Logic and Applications
Locul publicării:Boca Raton, United States
Public țintă
ProfessionalCuprins
Introduction, ultraproducts, definitions and examples; elementary equivalence - axiomatizable and finitely axiomatizable classes - examples and results in field theory; elementary definability - applications to polynomial and power series rings and their quotient fields; peano rings and peano fields; hilbertian fields and realizations of finite groups as galois groups; the language of modules over a fixed ring; algebraically compact modules; decompositions and algebraic compactness; the two sorted language of modules over unspecified rings; the first order theory of rings; pure global dimension and algebraically compact rings; representation theory of finite dimensional algebras; problems; tables; basic notions and definitions from homological algebra; functor categories on finitely presented modules.
Notă biografică
Christian. U Jensen (University of Copenhagen, Denmark) (Author) , Helmt Lenzing (Paderborn University, Germany) (Author)
Descriere
This volume highlights the links between model theory and algebra. The work contains a definitive account of algebraically compact modules, a topic of central importance for both module and model theory. Using concrete examples, particular emphasis is given to model theoretic concepts, such as axiomizability.